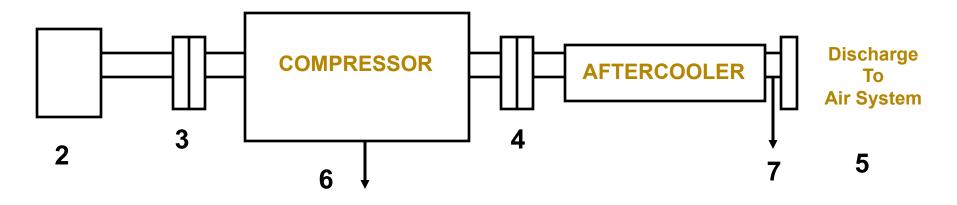

BASIC COMPRESSOR TYPES

John Ruprecht

Electric Operating Cost

Motor Full Load KVA Operating Cost Per Year (8760) Hours at Stated Cost Per KWH (\$)

•	-						
Size HP	.03	.04	.05	.06	.07	.08	.09
10	\$2,665	\$3,553	\$4,441	\$5,330	\$6,218	\$7,106	\$7,994
15	4,118	5,491	6,865	8,236	9,609	10,982	12,354
20	5,271	7,029	8,786	10,544	12,301	14,058	15,815
25	6,551	8,735	10,919	13,103	15,287	17,471	19,655
30	7,511	10,014	12,518	15,022	17,525	20,029	22,532
40	10,070	13,427	16,784	20,141	23,498	26,855	30,211
50	12,378	16,504	20,630	24,756	28,882	33,008	37,134
60	15,035	20,046	25,058	30,070	35,081	40,093	45,104
75	18,685	24,913	31,142	37,370	43,599	49,827	56,055
100	23,944	31,925	39,908	47,887	55,869	63,850	71,831
125	31,134	41,512	51,890	62,268	72,646	83,024	93,402
150	36,942	49,256	61,570	73,884	86,198	98,511	110,825
200	49,577	66,103	82,629	99,154	115,680	132,206	148,732



ABSOLATE PRESSURE	Is the arithmetic sum of gauge and atmospheric pressures. It must be used in all calculations involving the basic gas laws.
ABSOLUTE TEMPERATURE	Is the temperature of a body referred to the absolute zero, at which point the volume of an ideal gas theoretically becomes zero. On the Fahrenheit scale this is minus 459.67°F; on the Centigrade scale it is minus 273.15°C, engineering values of minus 460°F and minus 273°C are used herein.
BRAKE HORSEPOWER	The total HP input required including gas horsepower and all frictional losses.
CAPACITY	Quantity of gas actually delivered, typically referred back to the inlet conditions at pressure, temperature and moisture: • ACFM • SCFM • ICFM • CFM • FAD
DEW POINT	The temperature of a gas at a given pressure, at which vapor will start to condense.
GAS HORSEPOWER	The actual work required to compress and deliver a quantity of gas, including thermodynamic, leakage and fluid losses, but not including mechanical losses.

INTERCOOLING	Cooling of the gas between stages of compression to: 1. Reduce the interstage temperature 2. Reduce the volume to the next stage 3. Liquify condensable vapors to reduce horsepower All of the above in order to reduce horsepower.				
PRESSURE RATIO	The ratio of the absolute discharge pressure to the absolute inlet pressure				
RELATIVE HUMIDITY	The ratio of the actual vapor pressure to the vapor pressure at saturation. Refer to tables to calculate relative differences.				

- 1. Conditions 14.7 PSIA, 60 DEG. F., DRY
- 2. Ambient Conditions, Example 14.5 PSIA, 95 DEG. F., 70% RH
- 3. Inlet Flange Compressor
- 4. Discharge Flange of Compressor
- 5. Compressed Air to System
- 6. Seal Losses
- 7. Condensate Losses from Intercoolers and Aftercooler
 - FAD: Amount of compressed air measured at 5 related back to ambient 2
 - SCFM: Amount @ 4 or 5 referred back to standard (1)
 - ACFM: Amount @ 4 or 5 referred back to inlet flange (3)
 - ICFM: Amount of air expressed in cu. ft./min. flowing by inlet flange (3)

Definitions

The following definitions and principles are those applicable to multistage centrifugal compressors, and should be used in determining and specifying sizes and types of centrifugal compressors for various industrial applications.

ICFM OR INLET VOLUME IN CUBIC FEET PER MINUTE:

The volume of air in cubic feet per minute (cfm) actually entering the blower or exhauster inlet is designated ICFM.

SCFM OR STANDARD VOLUME IN CUBIC FEET OR AIR PER MINUTE:

The volume of air in cfm at 68F, 14.70 lbs. per sq. in absolute pressure and 36% relative humidity is designated SCFM

ABSOLUTE PRESSURE:

The total pressure measure from an absolute vacuum is the absolute pressure. It consists of the sum of the atmospheric pressure and the gage pressure. Where the gage pressure is expressed as suction, it is negative and must be subtracted from the atmospheric pressure to determine the absolute pressure, and where the gage pressure is expressed as pressure it must be added to the atmospheric pressure to determine the absolute pressure.

WE CAN NOW CONVERT FROM ONE RATING CONDITION TO ANOTHER OR FROM A RATING CONDITION TO A STANDARD CONDITION

EXAMPLE

I. GIVEN:

FAD CFM	= 657
PSIA	= 13.9
Temperature	= 90°F
RH	= 30%

Convert to SCFM using SPT Conditions

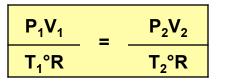
578

=

$$\frac{P_1 V_1}{T_1} = \text{Ambient Condition}$$

$$\frac{P_2 V_2}{T_2} = \text{Standard Condition Condition}$$

$$\text{SCFM} = V_2 = \frac{(P_1)}{(P_2)} \times \frac{(T_2)}{(T_1)} \times V_1$$


$$\text{SCFM} = \frac{(13.9 - (.698 \times .3))}{14.7} \times \frac{(460 + 60)}{(460 + 90)} \times 657$$

SCFM

Determine SCFM

Using Combined Gas Law Formula:

Let all Subscript 1 be SCFM Ref.

Subscript 2 be Jobsite Condition.

To Correct for RH

P – (RH X Partial Vapor Press @ Temp)

Therefore:

$\frac{(P_1 - (RH \times PVP)) V_1}{T_1^{\circ}R} =$		(P ₂ – (RH x PVP)) V ₂				
		T ₂ °R				

Solving for SCFM

$$V_1 = V_2$$
 (P₂ - (RH x PVP)) T₁°R
(P₁ - (RH x PVP)) T₂°R

II. GIVEN:

ICFM=1087PSIA=14.7Temperature= $97^{\circ}F$ RH=80%

Convert ICFM to FED CFM

F.A.D. = —	[ICFM X (14.4 – (.8 x 1.0078)]		557	-	(ICFM x Seal Loss)
	[14.7(.8 x .8668)]	X	562		

Compensate for:

Press, drop through piping, .3 PSI, temperature increase from ambient 5° F, water vapor measured as volume seal losses 1.5%

FAD = 1029

ICFM is inflated by 5.6%

or

A compressor rated at 1087 ICFM puts out the same amount of air as a unit rated at 1029 FAD CFM

Reciprocating Compressors

- Positive displacement machines, considered as constant volume variable pressure
- Delivers pulsating compressed air, either entrained with lubricating oil or lubricating free
- •Can be built as moderate duty or heavy duty units

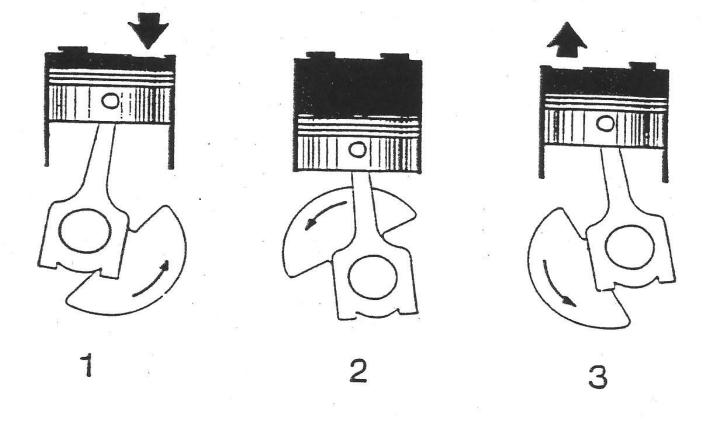
Major Industrial Classifications

Single Acting, Trunk-Piston

- Typically air-cooled
- Single or two-stage
- Positive or splash lubricated
- Although can be built as heavy duty, not a continuous duty compressor
- •Modern materials used in some designs to improve cooling characteristics
- Lubricated or non-lubricated cylinders
- Minimum foundation
- V-belt or direct drive

<u>Range</u>

- Fractional 100 HP
- •35 PSIG 5000 PSIG



SCFM REFERENCE POINTS

P ₁ (PSIA)	14.696	14.7	14.7
T ₁ (°F)	68	60	70
RH %	36	0	0

Single Action Design Pistons

© 2019 Atlas Air & Water

Double Acting, Cross Head Design

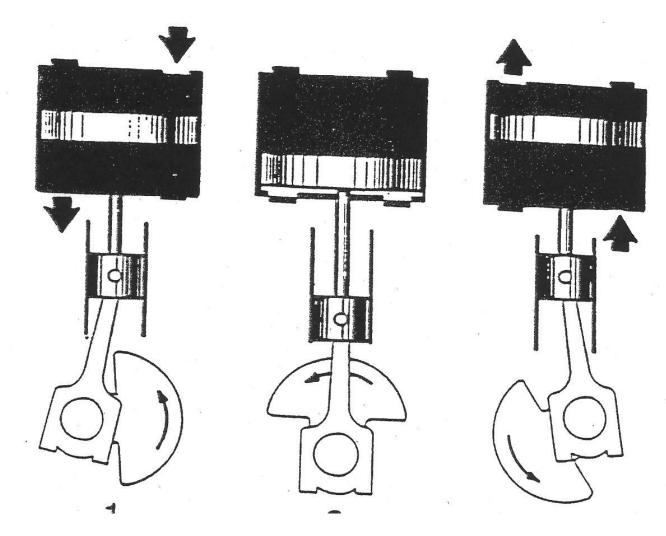
- Air or water cooled
- Single or two-stag
- Typically positive lubrication
- Typically classified as heavy duty, continuous machines
- Lubricated or non-lubricated cylinder
- V-belt or direct drive

Range

- 60 700 HP
- 35 250 PSIG

Main Components or Reciprocating Compressor

Frame and Running Gear


 Needs to be designed to withstand the maximum horsepower transmitted through the shaft and the pressure exerted upon it

Cylinders

- Cylinder arrangement and valve design are critical to overall efficiently and reliability of unit
- Different size cylinders are often placed on a given frame size to provide various sizes of compressors
- Houses the valves and rod packing

Double Action Cross Head Design Pistons

Rotary Compressors

- First introduced 40 years ago.
- Initial designs had symmetrical profile rotors with non-contracting rotors delivering oil-free air.
- This unit was efficient only at large flows (5,000 20,000 CFM)
- An asymmetric profile was developed. This reduced blow-by/leakage/slip and made low volume applications fairly efficient.
- Earliest applications were oil-flooded.
- The oil performed two functions:
 - Sealed between rotor and rotor lubricated rotors
 - Absorbed heat of compression
- Oil-flooded units were single-stage
- Oil-free rotaries are two-stage as heat of compression causes rotor growth and therefore discharges temperature needs to be limited. Also, two-stages improve efficiency.

Rotary Compressors

OIL-FLOODED SCREW

PRO

- Low initial cost
- Low to medium maintenance cost

Con

Low efficiency

OIL-FREE SCREW

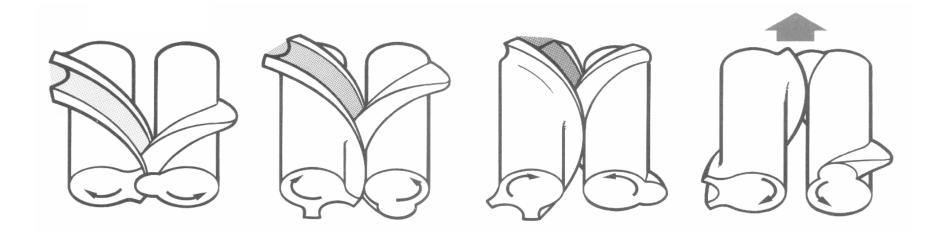
PRO

- Low Maintenance
- Good efficiency
- · Efficient over wide ranges of conditions and load cycles
- Oil-free air

CON

· High initial cost

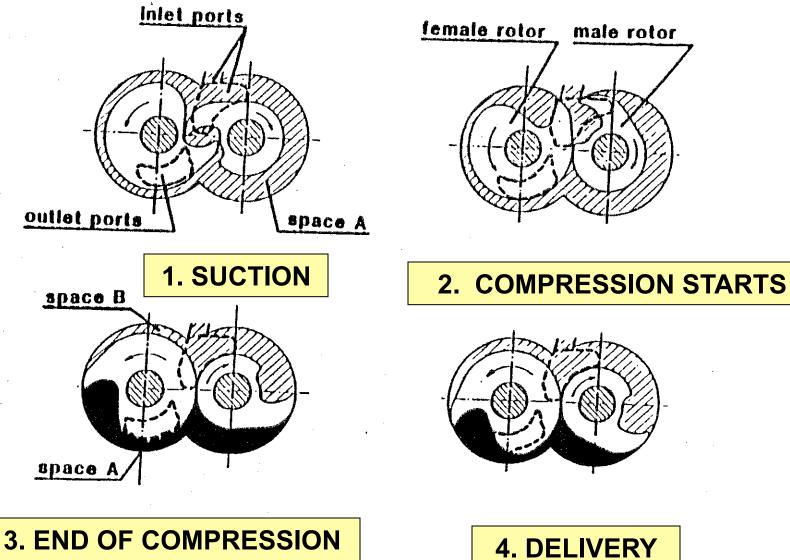
OIL-FREE LOBE


PRO

- Low maintenance
- Lower cost than oil free screw
- Stable over wide ranges of conditions and load cycles
- Oil-free air

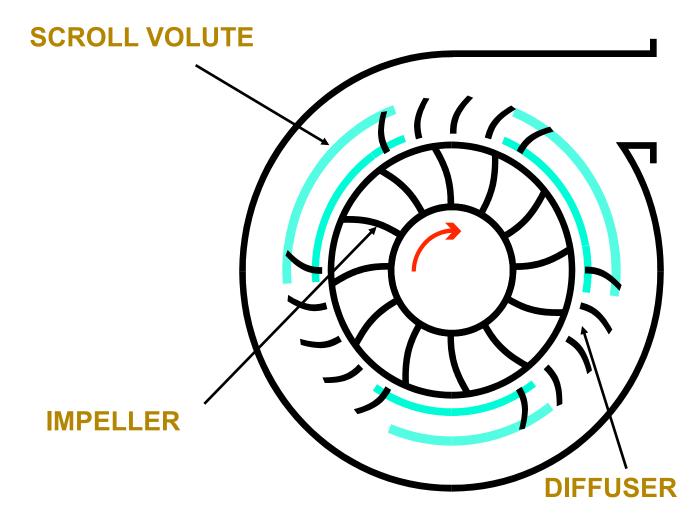
CON

Medium efficiency



Rotary Lobe Compressors

- First introduced in 1982
- Straight profile design imparts compression around perimeter of rotor
- Thrust loads eliminated from rotors
- Lower speed operation and simpler profile allows for lower selling price



Rotary Lobe

Centrifugal Compressor Terminology

Considerations For Centrifugal Compressors

- Capacity Requirements
- Lead Factors
- Ambient Factors:
 - Air temp and pressure
 - Water temp and cleanliness
 - Ambient air cleanliness

Centrifugals

- Pro
 - Reliable when properly applies
 - Oil-free air
- Con
 - Complicated operation
 - Performance greatly affected by ambient conditions
 - Unstable in varying load conditions

Centrifugal Compressors

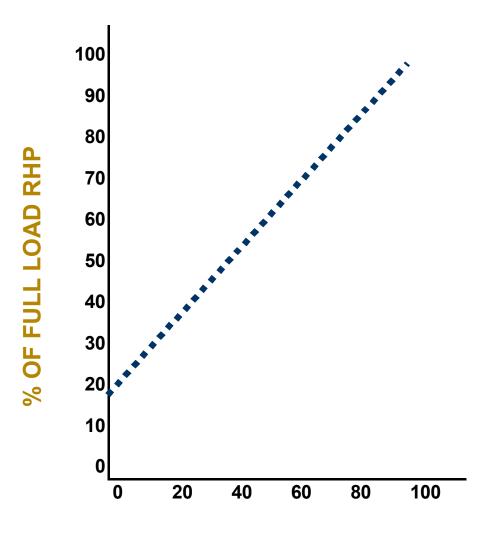
- Capacity and horsepower change greatly with varying ambient conditions
- Increased air density due to reduced air and water temperatures increases flow and horsepower
- Specific flows and horsepowers should be checked for high, low, and average ambient conditions
- Reduce inlet air pressure due to altitude also reduces horsepower requirements
- For every 1,000 feet in elevation power requirement is reduced by approximately 1.8%
- Motor performance should also be checked at altitude
- Mass flow is reduced with increased elevation

Regulation Types

Load – Unload

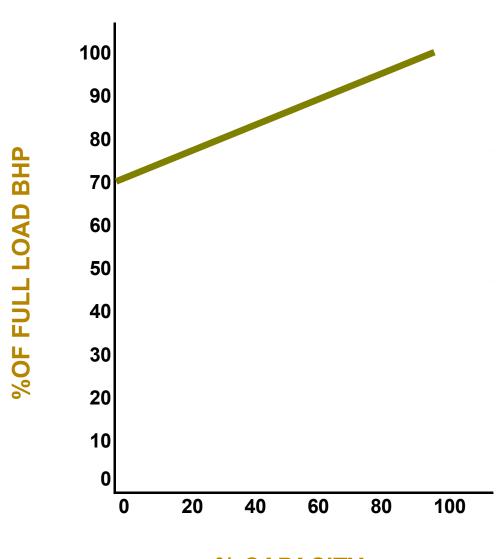
 A compressor operating under this mode will provide the largest possible operational range of any control system. The compressor will also use the least amount of power.

Modulation Control


 This method provides for a constant pressure by restricting the flow of air to the inlet of the compressor. Capacity can range from 0 – 100%, but this method of control is extremely inefficient.

Auto Dual Control

 A combination of load-unload and timed delay shutdown creates the most effective and efficient control system. This control system will turn the compressor off after it has run unloaded for a predetermined time.


Full Load/No Load Capacity Control

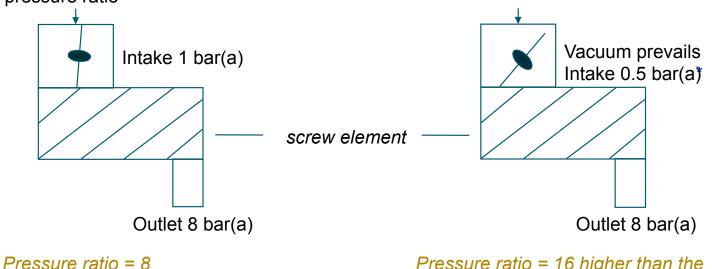
% CAPACITY

Modulating Capacity Control

25 ATLAS

Screw Compressor Controls

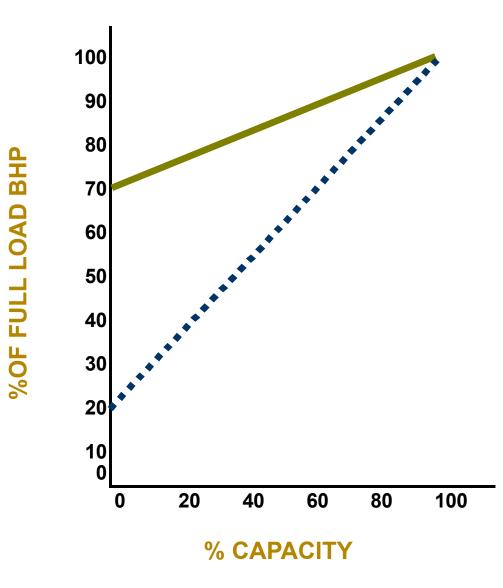
modulation control


In a modulation control a butterfly valve regulates the intake.

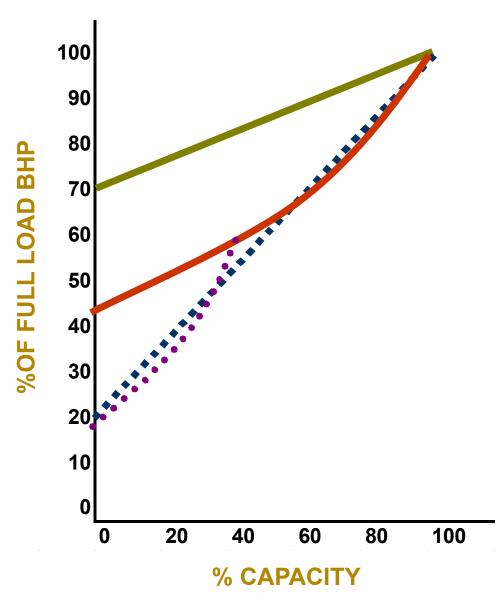
Full load

- Butterfly valve is fully open with full flow of air
- Compressor operates at the built pressure ratio

Part load

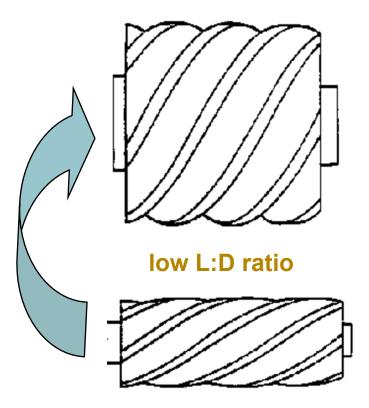

- Restriction at the inlet (vacuum)
- Outlet pressure remains the same (air net pressure)

Pressure ratio = 16 higher than the BIPR, hence inefficient at part loads



Full Load/No Load vs. Modulation Capacity Control

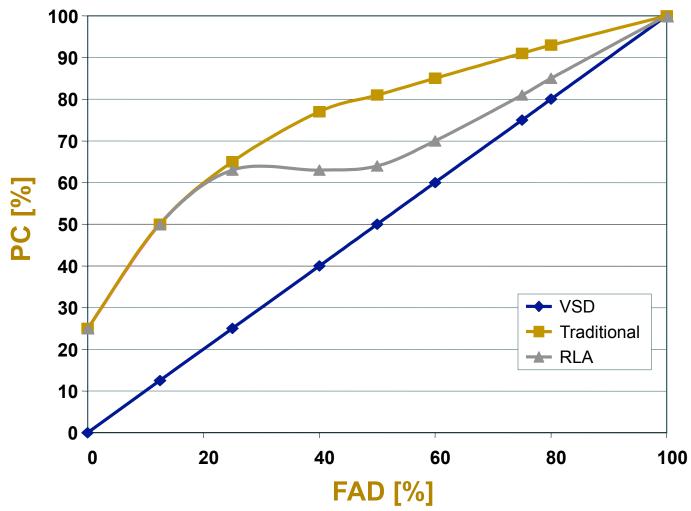
Turn Valve/Slide Valve vs. Full Load/No Load vs. Modulation


Rotor Length Adjustment

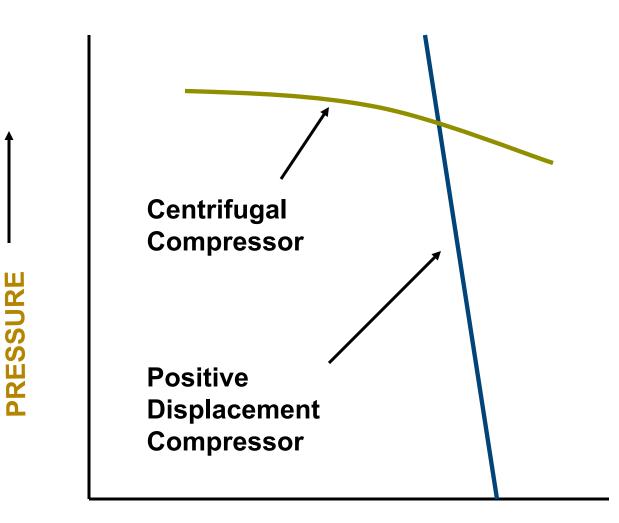
How it works ...

- Most common on higher kW machines
- Often called "turn valve" or slide valve"
- Effective rotor length is varied by moving the outlet port,hence adjusting the volume flow in relation to the demand
- 0.5-1 bar pressure band
- Inefficient at lower loads

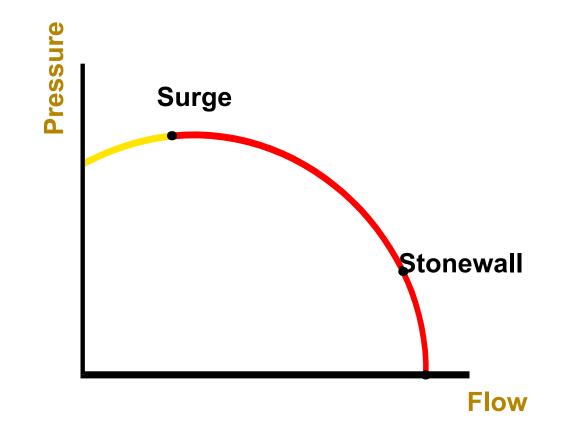
Rotor Length Adjustment



high L:D ratio


The optimal L/D ratio is changed resulting in substantial efficiency losses

Comparison



CAPACITY →

© 2019 Atlas Air & Water

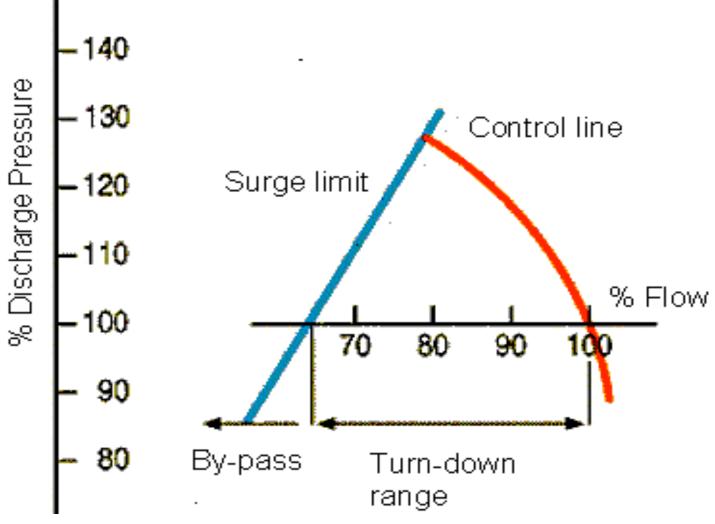
Centrifugal Compressor Fundamentals

The centrifugal compressor characteristic curve

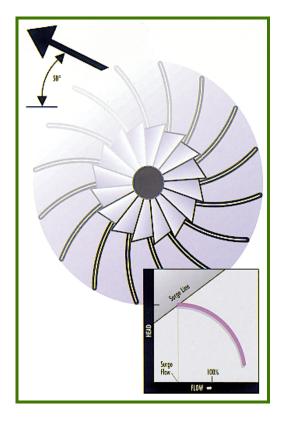
Centrifugal Compressor Fundamentals

SURGE

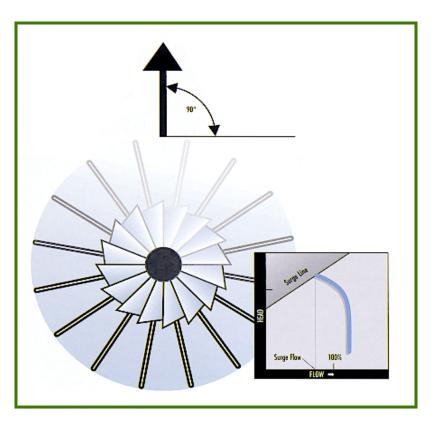
Breakdown of airflow due to high back pressure (oscillation flow)


STONE WALL (choke)

Maximum flow a compressor can handle at a given speed


© 2019 Atlas Air & Water

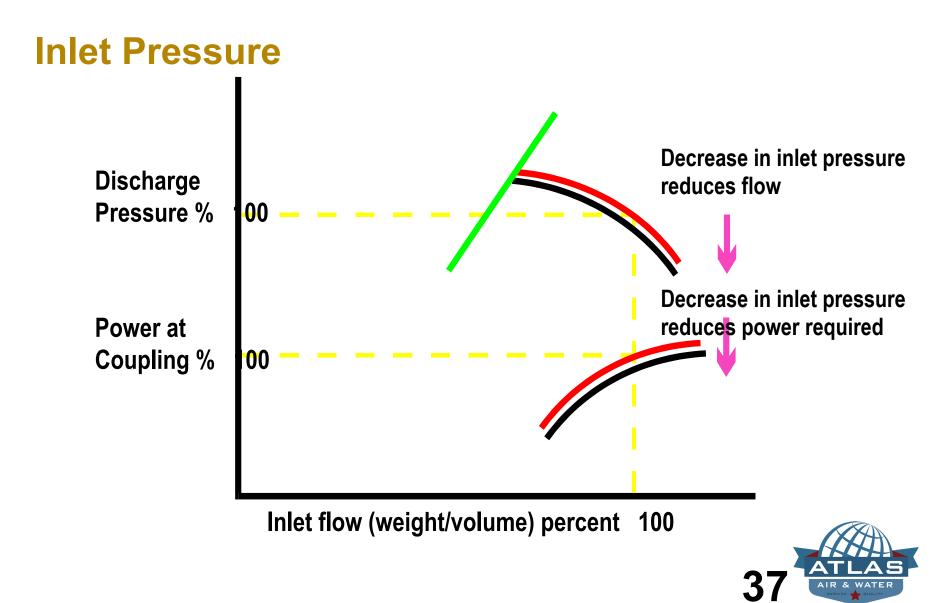
Turndown Capacity

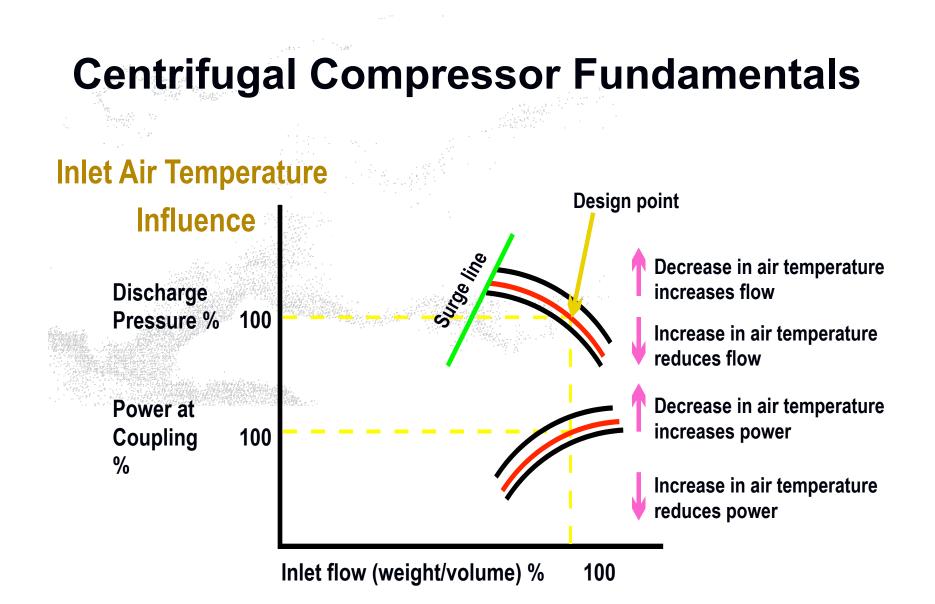


Impeller Geometry

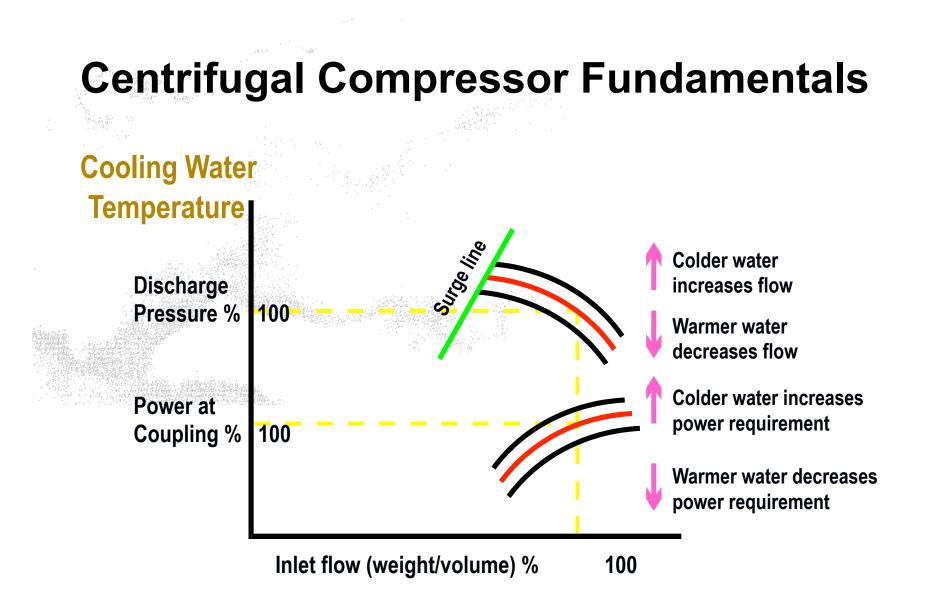
Backward Leaning

- + bigger turn-down
- + higher efficiency
- bigger diameter



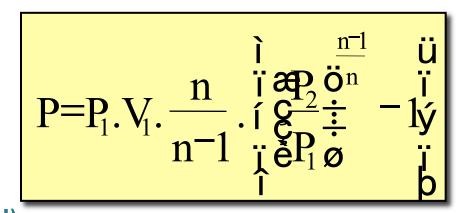

Radial

- + smaller diameter
- limited turn-down



Centrifugal Compressor Fundamentals

Variables Influencing Compressor Performance


Where: P : Power

- **P**₁ : Inlet pressure
- V₁ : Inlet volume
- n : Adiabatic factor
- P_2/P_1 : Pressure ratio

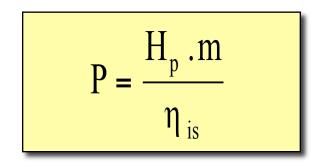
Variables influencing power:

- P₁ = Inlet pressure V₁ = Volume flow (not mass!)
- P_2/P_1 = Pressure ratio

Positive Displacement Compressors

Inlet air temperature and weight flow (density) have no effect on power

Variables influencing compressor performance


Dynamic Compressors

Where: H		Head	
R	:	Gas constant	$\left(\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
T ₁	:	Inlet temperature	$H = R \cdot T_1 \cdot \frac{k}{k} \cdot \int \left(\frac{P_2}{P_2}\right)^k - 1 \int \left($
k	:	Spec heat ratio cp/cv	$\begin{bmatrix} 11 - 12 \\ 11 \\ k - 1 \end{bmatrix} \begin{bmatrix} 1 \\ P_1 \end{bmatrix} = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$
P ₂ /P ₁		Pressure ratio	

Variables Influencing Centrifugal **Compressor Performance**

Power is calculated with formula:

There are three variables that

- Where: H_n
- : Head pressure
- : Mass flow m
- : **?** is **Isentropic efficiency**

affect the power:

- T₁ : Inlet temperature
- Mass flow m

 P_2/P_1 : Pressure ratio

Displacement Compressors

Variables:	P₁	=	Inlet pressure
	V ₁	=	Volume flow
	P_2/P_1	=	Pressure ratio

Dynamic Compressors

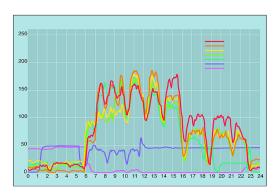
Variables: T_1 = Inlet temperature m = Mass flow P_2/P_1 = Pressure ratio

Be careful to obtain the proper part load horsepower for the type of compressor being reviewed.

Summer and winter can affect compressor performance differently depending what type of compressor is being considered:

EXAMPLE:

Efficiency for a positive displacement compressor is relatively the same in both summer and winder (BHP/ 100 CFM), on a mass flow basis, BHP/100 SCFM is much lower with lower inlet temperatures

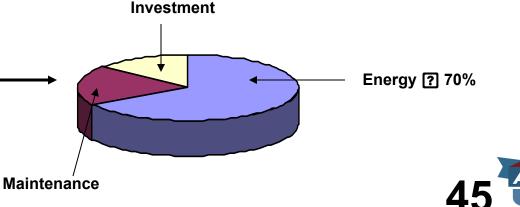

Efficiency of a dynamic compressor is poorer in winter conditions than in summer conditions because it is a constant mass flow unit (BHP/100 SCFM)

ZR315 VSD

for the lowest cost compressed air

Most production facilities show a characteristic air demand profile, with fluctuations in air demand according to the hour of the day or the day of the week. Compressors with a traditional regulation system cannot precisely follow these varying demand patterns. Result: energy goes to waste. It shouldn't have to. From the day you install the **ZR VSD** – Variable Speed Driven – compressor, your energy bill and the stability of your process will show a major difference.

A typical air demand profile, measured over one week.


A measurement box which is used for analysis of air demand and energy consumption in your plant. Based on these readings, the implementation of a VSD compressor in a typical installation can be stimulated by software. Future energy savings can be estimated. Introducing the Atlas Copco oil-free ZR315 VSD. The perfect match between air supply and air demand.

The integrated frequency converter of the ZR315 VSD will vary the speed of the compressor to closely follow the air demand, thereby saving enough energy to payback the additional investment in possibly one to two years, demanding on the energy tariffs and the demand patterns.

Call upon the expertise of Atlas Copco to assess your process and give you an estimation of energy savings possibly for your factory.

Operating range ZR315 VSD

Total compressor life cycle cost Because in the total life cycle cost of a standard compressor, energy consumption represents over 70%, the VSD approach has a significant impact on the total cost structure.

VSD – Variable Speed Drive

- = caring for energy
- = caring for nature

Lowest possible running cost

- Air supply = Air demand
- With a varying air demand pattern, motor speech regulation is the most efficient compressor control method
- Energy savings at partial load
- Extended component lifetime

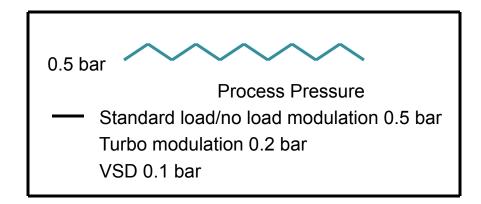
Constant pressure

Process stability improvement

Low starting currents

- Lower investments in electrical systems
- No peak current penalties
- Smooth starting

Motor and VSD, on brand

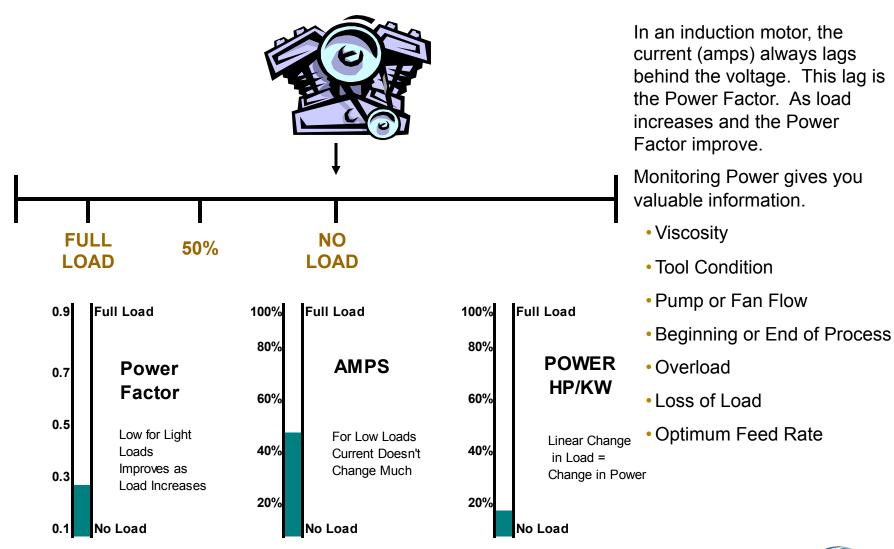

- Highest possible efficiency in the speed range
- Consolidated warranty for the entire system
- Worldwide service availability

VSD – a Very Smart Decision

No current peaks

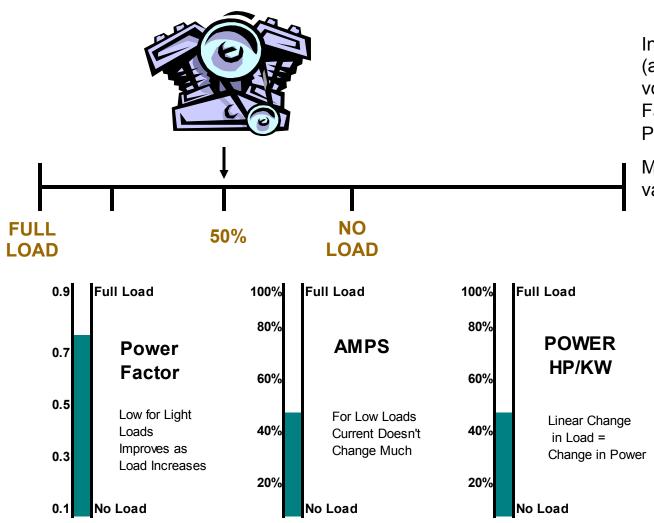
Compressor starts are even smoother than with so called "soft starters." This greatly simplifies the electrical installation. No current peaks. No risk of penalties from the utility company. Investment in the electrical system can be reduced.

The frequency converter is integrated within the compressor package.



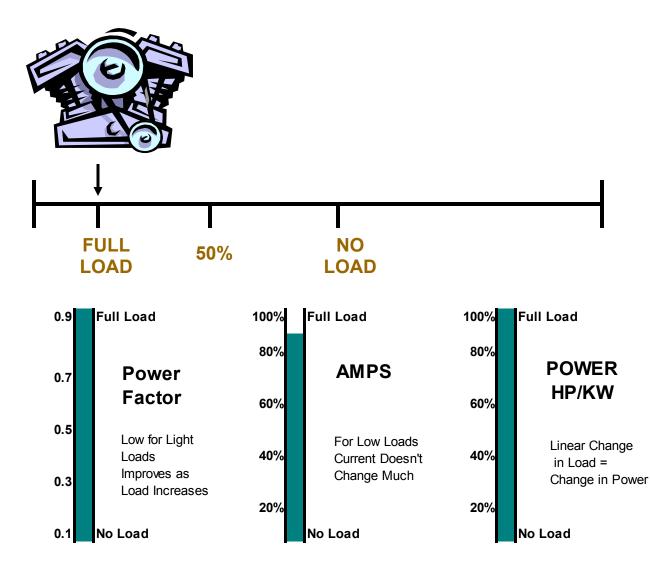
Constant pressure

The output pressure is virtually constant over a wide capacity range (narrow pressure band within 0.1 bar). Unlike traditional regulation systems, it optimizes energy consumption and ensures high process stability.



Motor Load vs. Power Factor, AMPS, Power

Motor Load vs. Power Factor, AMPS, Power


In an induction motor, the current (amps) always lags behind the voltage. This lag is the Power Factor. As load increases and the Power Factor improve.

Monitoring Power gives you valuable information.

- Viscosity
- Tool Condition
- Pump or Fan Flow
- Beginning or End of Process
- Overload
- Loss of Load
- Optimum Feed Rate

Motor Load vs. Power Factor, AMPS, Power

In an induction motor, the current (amps) always lags behind the voltage. This lag is the Power Factor. As load increases and the Power Factor improve.

Monitoring Power gives you valuable information.

- Viscosity
- Tool Condition
- Pump or Fan Flow
- Beginning or End of Process
- Overload
- Loss of Load
- Optimum Feed Rate

Air Cooled

1. COMPRESSOR UNIT

• The unit should be installed on a level floor capable of supporting the weight of the unit. Stated distance between walls are minimums. Recommended minimum distance between top of unit and ceiling is 4.0 feet (ventilation alternative).

2. COMPRESSOR DISCHARGE VALVE

3. DISCHARGE PIPE

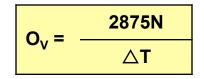
• The size and length of the discharge pipe may be estimated using the formula stated below:

$$L = \frac{1470 \triangle P \times d^5 \times P}{O_c^{1.85}}$$

Where: L = Length of discharge pipe (feet)

 $\triangle P$ = Allowable pressure drop (PS) – Recommended 1.45 PSI Maximum

d = Inside diameter of discharge pipe (inches)


P = Absolute pressure at compressor outlet valve (PSIA)

 O_c = Compressor capacity (CFM)

4. VENTILATION

- The inlet grill(s) and ventilation fm must be installed so there is no recirculation of the compressor cooling air.
- The air velocity through the inlet grill(s) should be limited to 15.0 feet per second.
- For ventilation alternatives 2, 3, and 4, the maximum allowed pressure drop over the cooling ducts is 0.12 inches of water.
- The temperature at the compressor unit intake should be maintained between 32° F and 104° F.
- The required ventilating air, for ventilation alternatives 1 and 2 may be estimated using the following formula:

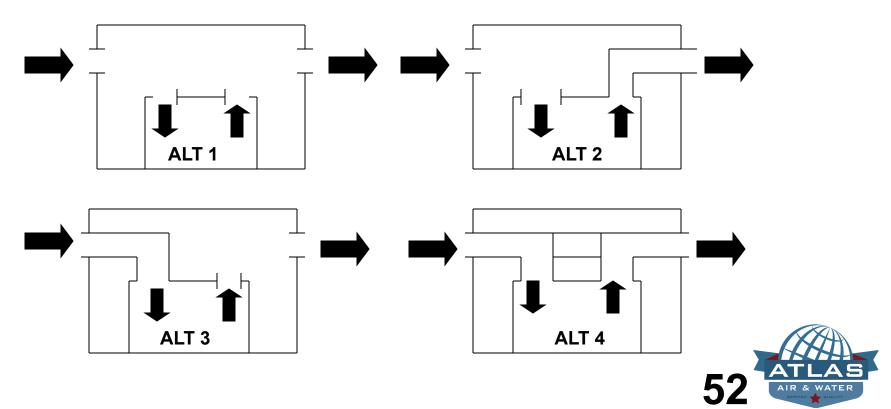
Where O_V is ventilating air required (CFM)

N is nominal unit horsepower (HP)

 \triangle T expected, or allowable temperature rise between the room and incoming air. remember intake air temperature to unit should be less than 104° F.

5. MOISTURE DRAIN

6. ELECTRICAL CONTROL CUBICLE WITH MONITORING PANEL


7. ELECTRICAL ENTRANCE PANEL

8. <u>ALL PIPING AND ELECTRICAL CONNECTIONS TO THE UNIT MUST BE STRESS FREE.</u> <u>THE UNIT SHOULD NOT SUPPORT THESE LOADS.</u>

- 9. SEE GENERAL ARRANGEMENT FOR DIMENSIONS
- 10. FLOW DIAGRAM AVAILABLE

Water Cooled

1. COMPRESSOR UNIT

• The unit should be installed on a level floor capable of supporting the weight of the unit. Stated distance between walls are minimums. Recommended minimum distance between top of unit and ceiling is 4.0 feet (ventilation alternative).

2. COMPRESSOR DISCHAREGE VALVE

3. DISCHARGE PIPE

• The size and length of the discharge pipe may be estimated using the formula stated below:

$$L = \frac{1470 \triangle P \times d^5 \times P}{O_c^{1.85}}$$

Where: L = Length of discharge pipe (feet)

 \triangle P = Allowable pressure drop (PS) – Recommended 1.45 PSI Maximum

d = Inside diameter of discharge pipe (inches)

P = Absolute pressure at compressor outlet valve (PSIA)

 O_c = Compressor capacity (CFM)

4. VENTILATION

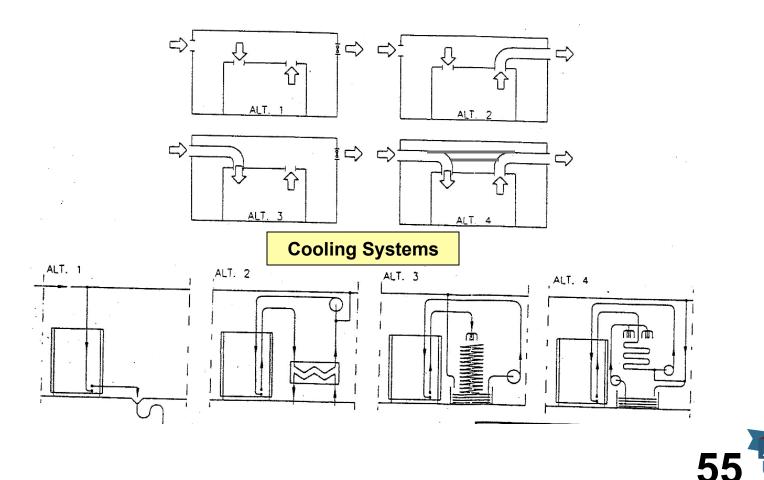
- The inlet grill(s) and ventilation fm must be installed so there is no recirculation of the compressor cooling air.
- The air velocity through the inlet grill(s) should be limited to 15.0 feet per second.
- For ventilation alternatives 2, 3, and 4, the maximum allowed pressure drop over the cooling ducts is 0.12 inches of water.
- The temperature at the compressor unit intake should be maintained between 32° F and 104° F.
- The required ventilating air, for ventilation alternatives 1 and 3 may be estimated using the following formula:

Where O_V is ventilating air required (CFM)

N is nominal unit horsepower (HP)

 \triangle T expected, or allowable temperature rise between the room and incoming air. remember intake air temperature to unit should be less than 104° F.

5. MOISTURE DRAIN


6. ELECTRICAL CONTROL CUBICLE WITH MONITORING PANEL

7. ELECTRICAL ENTRANCE PANEL

- 8. <u>ALL PIPING AND ELECTRICAL CONNECTIONS TO THE UNIT MUST BE STRESS FREE. THE</u> <u>UNIT SHOULD NOT SUPPORT THESE LOADS.</u>
- 9. SEE GENERAL ARRANGEMENT FOR DIMENSIONS
- 10. FLOW DIAGRAM AVAILABLE

VENTILATION PROPOSALS

AIR &

WATE

Effect of Ambient Conditions on Compressor Performance

Positive Displacement Compressors

- Affected minimally by ambient temperature
- Reduced inlet temperature increases mass flow
- For every 5° F reduction in temperature, mass flow increases 1%

Reduced Inlet Pressure Reduces Output Flow Slightly

- One PSI drop in inlet pressure reduces capacity by slightly more than one CFM, free air or 6.8% in mass flow
- One PSI is approximately 2000 feet

Effect of Initial or Intake Temperature on Delivery of Air Compressors Based on a Normal Intake Temperature of 60°F

Initia	al Temperatures	Initia	I Temperatures
°F	Relative Delivery	°F	Relative Delivery
-20	1.180	70	0.980
-10	1.155	80	0.961
0	1.130	90	0.944
10	1.104	100	0.928
20	1.083	110	0.912
30	1.061	120	0.896
32	1.058	130	0.880
40	1.040	140	0.866
50	1.020	150	0.852
60	1.000	160	0.838

Water Temperature

- Relative difference between ambient air temperature and water temperature affects horsepower.
- Compressor performance is normally based on perfect inter cooling, i.e., inlet temperature to second stage is the same as inlet temperature to the first stage.
- Horsepower is reduced when second stage inlet temperatures lower.
- For every 12° F reduction in water temperature from perfect inter cooling, horsepower is reduced by 1%

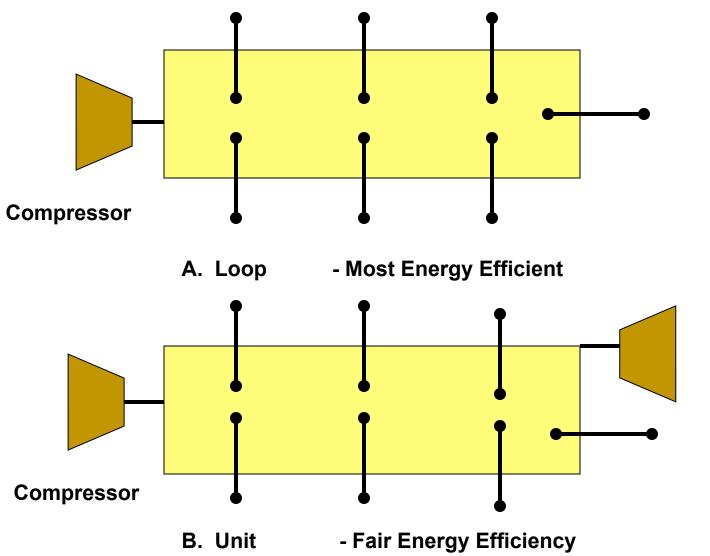
Weight of Dry Air at Various Pressures and Temperatures at Sea Level

of Air		Gauge Pressure, Pounds 0 5 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 175 200 225 250 300																					
-		0	5	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	175	200	225	250	300
*F	*C									Weight	in Pou	nds per	Cubic	Foot									
-20	-28.9	0.0900	0.1205	0.1515	0.2125	0.2744	0.3360	0.3970	0.4580	0.5190	0.5800	0.6410	0.702	0.7635	0.825	0.886	0.948	1.010	1.165	1.318	1.465	1.625	1.930
-10	-23.3	0.0882	0.1184	0.1485	0.2090	0.2685	0.3283	0.3880	0.4478	0.5076	0.5674	0.6272	0.687	0.747	0.807	0.868	0.928	0.989	1.139	1.288	1.438	1.588	1.890
0	-17.8	0.0864	0.1160	0.1455	0.2040	0.2630	0.3215	0.3800	0.4385	0.4970	0.5555	0.6140	0.672	0.731	0.790	0.849	0.908	0.968	1.114	1.260	1.406	1.553	1.850
10	-12.2	0.0846	0.1136	0.1425	0.1995	0.2568	0.3145	0.3720	0.4292	0.4863	0.5433	0.6006	0.658	0.716	0.774	0.832	0.889	0.947	1.090	1.233	1.376	1.520	1.810
20	-6.7	0.8280	0.1112	0.1395	0.1955	0.2516	0.3071	0.3645	0.4205	0.4770	0.5330	0.5890	0.645	0.701	0.757	0.813	0.869	0.927	1.067	1.208	1.348	1.489	1.770
30	-1.1	0.0811	0.1088	0.1366	0.1916	0.2465	0.3015	0.3570	0.4121	0.4672	0.5221	0.5771	0.632	0.687	0.742	0.797	0.852	0.908	1.046	1.184	1.322	1.406	1.735
40	4.4	0.0795	0.1067	0.1338	0.1876	0.2415	0.2954	0.3503	0.4038	0.4576	0.5114	0.5652	0.619	0.673	0.727	0.781	0.835	0.890	1.025	1.161	1.296	1.431	1.701
50	10.0	0.0780	0.1045	0.1310	0.1939	0.2367	0.2905	0.3432	0.3960	0.4487	0.5014	0.5541	0.607	0.660	0.713	0.766	0.819	0.873	1.006	1.139	1.271	1.403	1.668
60	15.6	0.0764	0.1025	0.1283	0.1803	0.2323	0.2840	0.3362	0.3882	0.4402	0.4927	0.5447	0.596	0.649	0.700	0.752	0.804	0.856	0.988	1.116	1.245	1.376	1.636
70	21.1	0.0750	0.1005	0.1260	0.1770	0.2280	0.2791	0.3302	0.3808	0.4316	0.4824	0.5331	0.584	0.635	0.686	0.737	0.788	0.839	0.967	1.095	1.223	1.350	1.604
80	26.7	0.0736	0.0988	0.1239	0.1738	0.2237	0.2739	0.3242	0.3738	0.4234	0.4729	0.5224	0.572	0.622			-		0.949				
90	32.2	0.0723	0.0970	0.1218	0.1707	0.2195	0.2688	0.3182	0.3670	0.4154	0.4639	0.5122	0.561	0.611	0.660	0.709	0.759	0.809	0.932	1.054	1.177	1.300	1.544
100	37.8	0.0710	0.0954	0.1197	0.1676	0.2155	0.2638	0.3122	0.3602	0.4079	0.4555	0.5033	0.551	0.599	0.648	0.696	0.745	0.794	0.914	1.035	1.155	1.276	1.517
110	43.3	0.0698	0.0937	0.1176	0.1645	0.2115	0.2593	0.3070	0.3542	0.4011	0.4481	0.4950	0.542	0.589	0.637	0.685	0.732	0.780	0.899	1.017	1.135	1.254	1.491
120	48.9	0.0686	0.0092	0.1155	0.1618	0.2080	0.2549	0.3018	0.3481	0.3944	0.4403	0.4866	0.533	0.579	0.626	0.673	0.720	0.767	0.884	1.001	1.118	1.234	1.465
130	54.4	0.0674	0.0905	0.1135	0.1590	0.2045	0.2505	0.2966	0.3446	0.3924	0.4296	0.4770	0.524	0.570	0.616	0.662	0.708	0.754	0.869	0.984	1.099	1.214	1.440
140	60.0	0.0663	0.0889	0.1115	0.1565	0.2015	0.2465	0.2915	0.3364	0.3813	0.4262	0.4711	0.516							0.968		1.194	-
150						0.1985					0.4193									0.953			
175	79.4	0.0626	0.0840	0.1054	0.1482	0.1910	0.2335	0.2755	0.3181	0.3607	0.4033	0.4450	0.488	0.531	0.573	0.616	0.658	0.701	0.808	0.914	1.021	1.128	1.337
200						0.1840							0.470							0.879			
225						0.1770								0.491	0.531	0.570	0.609	0.649	0.747	0.846	0.944	1.043	1.240
250	121					0.1705														0.817		1.007	1.197
275						0.1645														0.789		0.972	
300						0.1592														0.762			
350	177	0.0491				0.1495					0.3156	0.3488	0.382							0.715		0.883	1.048
400						0.1405					0.2974		0.360							0.674		0.831	
150						0.1330														0.637			
500						0.1260														0.604			
550						0.1198														0.573			
600	316	0.0376	0.0504	0.0631	0.0885	0.1140	0.1395	0.1650	0.1904	0.2158	0.2412	0.2668	0.292	0.317	0.343	0.368	0.393	0.419	0.483	0.547	0.611	0.675	0.801

Based on perfect gas laws and air weight of 08071 lbs. Per cu. Ft. at 32° F and barometric pressure of 14696 lbs. Per sq. in.

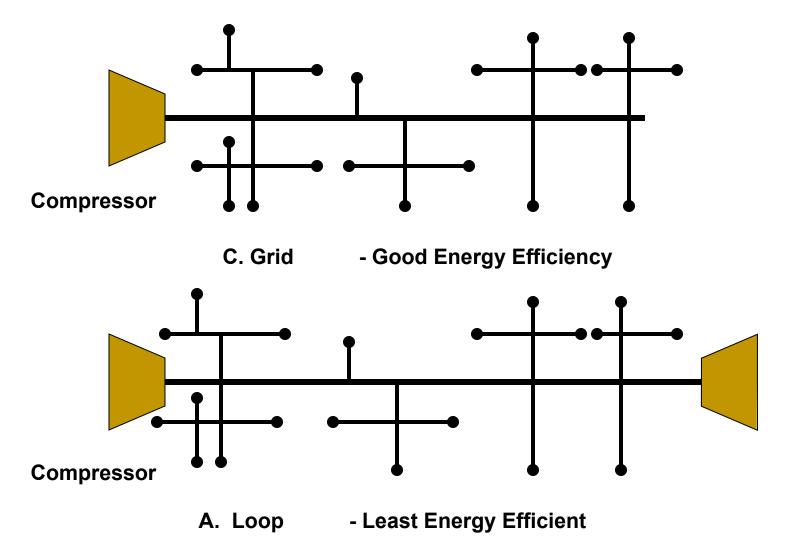
Altitude and Atmospheric Pressures

Altitude Above Sea Level	Barometer	Atmospheric Pressure
Feet	Inches Hg. Abs.	PSIA
0	29.92	14.69
250	29.65	14.56
500	29.38	14.43
750	29.12	14.30
1,000	28.86	14.16
1,250	28.60	14.05
1,500	28.33	13.91
1,750	28.08	13.79
2,000	27.82	13.66
2,250	27.57	13.54
2,500	27.32	13.41
2,750	27.07	13.30
3,000	26.82	13.17
3,250	26.58	13.05
3,500	26.33	12.93
3,750	26.09	12.81
4,000	25.84	12.69
4,250	25.61	12.58
4,500	25.37	12.46
4,750	25.14	12.35
5,000	24.90	12.23
5,250	24.67	12.12
5,500	24.44	12.00
5,750	24.21	11.89
6,000	23.99	11.78


Difference between wet and dry bulb Thermometer Degrees Fahrenheit Temperature of air degrees F 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 -10 34 13 59 49 20 11 68 60 76 70 78 73 58 53 26 21 80 75 50 46 81 77 82 77 65 61 65 51 83 83 56 53 58 55 45 42 37 35 26 24 60 57 85 85 61 57 30 27 85 85 61 58 49 47 85 85 49 46 85 85 72 69 66 63 60 43 41 86 86 89 86 86 63 70 68 65 62 89 86 83 73 70 59 56 54 51 33 30

Relative Humidity of Air from Readings of Wet and Dry Bulb Thermometers

Condensed from Circular F of the U.S. Weather Bureau



Distribution System Piping Diagram

Distribution System Piping Diagram

Nominal Pipe	CFM						Line	Press	sure -	PSIG					
Size	Free Air	10	15	20	30	40	50	75	100	125	150	200	250	300	350
	10		1.45	1.24	0.96	0.79	0.67	0.48	0.38	0.31	0.26	0.20	0.16	0.14	0.12
	15			2.58	2.08	1.70	1.43	1.04	0.81	0.67	0.57	0.43	0.35	0.30	0.25
	20				3.60	2.94	2.48	1.80	1.41	1.15	0.98	0.75	0.61	0.51	0.44
1/2"	30						5.40	3.90	3.05	2.50	2.12	1.63	1.32	1.11	0.96
Schedule															
40	40							6.80	5.31	4.37	3.70	2.84	2.30	1.94	1.67
40	50								8.20	6.75	5.70	4.37	3.55	2.99	2.58
	60								11.70	9.61	8.16	6.25	5.08	4.27	3.68
	80										14.40	11.00			6.50
	100											17.10	13.90	11.70	10.10
	10	0.42	0.35	0.30	0.23	0.19	0.16	0.12							
	20	1.57	1.31	1.32	0.87	0.71	0.60	0.43	0.34	0.28	0.24	0.18	0.15		0.11
	35			3.22	2.50	2.04	1.72	1.25	0.98	0.80	0.68	0.52	0.42	0.35	0.31
	50				4.95	4.05	3.42	2.47	1.93	1.59	1.35	1.03	0.84	0.71	0.61
o / / II															
3/4"	65						5.71	4.12		2.65	2.25	1.72		1.18	1.01
Schedule	80							6.19	4.74		3.37	2.58		1.76	1.52
40	100							9.60	7.53	6.40	5.25	4.02	3.26	2.74	2.37
	125								11.70	9.70	8.12	6.22	5.05	4.25	3.67
	150									12.60	11.50	8.85	7.16	6.03	5.20
	200									12.00	11.50				5.20 9.14
	200 250											15.60	12.60 19.70		9.14 14.30
	200												19.70	10.00	14.30

Nominal	CFM						Line	Press	sure -	PSIG					
Pipe Size	Free Air	10	15	20	30	40	50	75	100	125	150	200	250	300	350
	20	0.45	0.38	0.32	0.25	0.20	0.17	0.13	0.10						
	35	1.25	1.07	0.92	0.71	0.58	0.49	0.35	0.28	0.23	0.19	0.15	0.12	0.10	
	50			1.81	1.40	1.15	0.97	0.70	0.55	0.45	0.38	0.29	0.24	0.20	0.17
	75				3.10	2.53	2.14	1.54	1.21	0.99	0.84	0.65	0.52	0.44	0.38
1"	100					4.39	3.70	2.68	2.09	1.72	1.46	1.12	0.91	0.76	0.66
-	125						5.70	4.10	3.22	2.64	2.24	1.72	1.39	1.17	1.01
Schedule	150							5.88	4.60	3.78	3.20	2.46	1.99	1.68	1.45
40	200								8.05	6.61	5.61	4.30	3.49	2.94	2.53
	250									10.30	8.87	6.72	5.45	4.59	3.96
	300										12.60				5.70
	400											17.20	14.00	11.70	10.10
	500												21.8	18.30	15.80
	50	0.31	0.25	0.22	0.17	0.14	0.12								
	75	0.65	0.54	0.46	0.36	0.29	0.25	0.18	0.14	0.12	0.10				
	100	1.13	0.94	0.80	0.62	0.51	0.43	0.31	0.24	0.24	0.20		0.13		
	125		1.44	1.24	0.96	0.78	0.66	0.48	0.37	0.31	0.26	0.20	0.16	0.14	0.12
	150			1.75	1.35	1.11	0.94	0.68	0.53	0.43	0.37	0.28	0.23	0.19	0.17
	200			3.04	2.36	1.93	1.63	1.18	0.92	0.76	0.64	0.49	0.40	0.34	0.29
	250				3.68	3.01	2.54	1.83	1.44	1.18	1.00	0.77	0.62	0.52	0.45
1 1/2"	300					4.29	3.62	2.62	2.05	1.74	1.43	1.09	0.89	0.75	0.64
Schedule 40	400						6.35	4.58	3.59	2.94	2.50	1.92	1.55	1.31	1.13
	500							7.12	5.59	4.59	3.89	2.98	2.42	2.03	1.76
	600								8.00	6.55	5.55	4.26	3.46	2.91	2.51
	700								10.80	8.89	7.55	5.78	4.70	3.95	3.40
	800									11.60	9.80	7.50	8.10	5.12	4.42
	1000										15.20	11.70			6.86
	1200											16.40			9.61
	1400											22.90	18.60	15.60	13.50

5 ATLAS

Nominal	CFM						Line F	Press	ure - I	PSIG					
Pipe Size	Free Air	10	15	20	30	40	50	75	100	125	150	200	250	300	350
	75	0.19	0.16	0.13	0.10										
	100	0.28	0.24	0.20	0.16	0.13	0.11								
	150	0.69	0.57	0.49	0.38	0.31	0.26	0.19	0.15	0.12	0.10				
	200	1.20	1.00	0.85	0.66	0.54	0.46	0.33	0.26	0.21	0.18	0.14	0.11		
	250		1.53	1.31	1.02	0.83	0.70	0.51	0.40	0.33	0.26	0.21	0.17	0.15	0.13
	300			1.89	1.47	1.20	1.01	0.73	0.57	0.47	0.40	0.31	0.26	0.21	0.18
	400				2.50	2.04	1.73	1.25	0.98	0.80	0.68	0.52	0.42	0.36	0.31
2"	500				3.87	3.16	2.67	1.93	1.51	1.24	1.05	0.81	0.65	0.55	0.48
Schedule	600					4.50	3.81	2.75	2.15	1.77	1.50	1.05	0.93	0.79	0.58
40	800							4.87	3.82		2.66		1.65		
	1000							7.55	5.90		4.12		2.56		
	1250								9.12	7.49	6.35	4.87	3.96	3.32	2.87
	1500									10.80	9.17	7.02	5.70	4.80	4.14
	1750										12.50		7.74		
	2000										16.30				
	2250											15.80		10.80	
	2500											19.40	15.80	13.30	11.40

Nominal	CFM						Line	Press	ure - P	SIG					
Pipe Size	Free Air	10		20	30	40	50	75	100	125	150	200	250	300	350
	150 200 250 300 400 500	0.29 0.50 0.80 1.08		0.22 0.36 0.55 0.77 1.34 2.07	0.18 0.28 0.43 0.60 1.04 1.60	0.13 0.23 0.35 0.49 0.85 1.31	0.11 0.19 0.29 0.41 0.72 1.11	0.14 0.21 0.30 0.52 0.80	0.17 0.23 0.41	0.14 0.19 0.33	0.16		0.10 0.18 0.27	0.15	
2 1/2" Schedule	600 800			2.95	2.28 4.00	1.87 3.27	1.58 2.76	1.14 2.00	0.89 1.56	0.73 1.28	0.67 1.09	0.48 0.83	0.39 0.68	0.33 0.57	0.28 0.49
40	1000 1250 1500 2000					5.17	4.30 6.78	3.19 4.89 6.85	3.83	3.14 4.40	1.69 2.66 3.73 6.55	1.30 2.04 2.87 5.02	1.05 1.66 2.32 4.07	1.39 1.95	0.76 1.20 1.68 2.96
	2500 3000 3500 4000									12.10	10.30 14.70	7.86 11.30 15.40 20.00	6.39 9.13 12.50 16.30	7.70 10.50	6.62 9.02
	300 500 750 1000	0.36 0.94	0.30 0.78 1.69	0.26 0.67 1.44 2.50	0.20 0.52 1.12 1.94	0.16 0.43 0.92 1.59	0.13 0.36 0.78 1.34	0.10 0.26 0.56 0.97	0.20	0.36	0.14 0.30 0.53	0.11 0.23 0.41	0.19 0.33		0.14 0.24
3" Schedule	1500 2000 2500 3000				4.30	3.52	2.96 5.29	2.15 3.81 5.96 8.58	2.99		1.17 2.08 3.26 4.68	0.90 1.60 2.50 3.58	0.73 1.30 2.02 2.91	1.09 1.70	0.53 0.94 1.47 2.11
Schedule 40	3500 4000 4500 5000								9.15 11.90		9.31 10.50	4.89 6.36 8.06 9.95	3.96 5.16 6.55 8.07	4.35 5.50	3.76
	6000 7000											14.30 19.50	11.60 15.90		

Nominal	CFM						Line	Press	ure - P	SIG					
Pipe Size	Free Air	10	15	20	30	40	50	75	100	125	150	200	250	300	350
	500	0.24	0.20	0.17	0.13	0.11									
	750	0.52	0.43	0.37	0.29	0.23	0.20	0.14	0.11						
	1000	0.90	0.75	0.64	0.50	0.41	0.34	0.25	0.19	0.16	0.14	0.10			
	1500		1.64	1.41	1.09	0.89	0.75	0.54	0.43	0.35	0.30	0.23	0.18	0.16	0.13
	2000			2.46	1.91	1.56	1.32	0.95	0.75	0.61	0.52	0.40	0.32	0.27	0.23
	2500				2.96	2.42	2.04	1.47	1.16	0.95	0.80	0.62	0.50	0.42	0.34
4"	3000				4.20	3.44	2.91	2.10	1.64	1.35	1.14	0.88	0.71	0.60	0.52
Schedule	4000						5.15	3.11	2.90	2.38	2.02	1.55	1.26	1.06	0.91
40	5000							5.75	4.50	3.70	3.14	2.40	1.95	1.64	1.42
	6000							8.22	6.45	5.30	4.50	3.44	2.79	2.35	2.03
	7000								8.77	7.20	6.10	4.68	3.80	3.20	2.76
	8000								11.50	9.40	8.00	6.11	4.95	4.17	3.60
	10,000									14.70	12.50	9.55	7.75	6.52	5.02
	12,000											13.80	11.80	9.40	8.10
	14,000											18.80	15.20	12.80	11.00
	1000	0.29	0.24	0.20	0.18	0.16	0.14	0.13	0.11						
	1500	0.62	0.52	0.44	0.39	0.34	0.31	0.28	0.24	0.21	0.16	0.13	0.11	0.40	0.40
	2000 2500	1.09	0.91	0.78 1.19	0.68	0.60 0.92	0.54	0.49	0.42	0.36	0.28 0.44	0.24 0.36	0.19 0.30	0.16 0.25	0.13
	2500		1.39	1.19	1.04	0.92	0.83	0.75	0.54	0.55	0.44	0.30	0.30	0.25	0.19
	3000		1.98	1.69	1.48	1.31	1.18	1.07	0.91	0.79	0.62	0.51	0.42	0.36	0.27
	4000			2.99	2.61	2.32	2.08	1.89	1.60	1.39	1.09	0.90	0.74	0.63	0.48
5"	5000				4.02	3.68	3.22	2.92	2.47	2.14	1.69	1.40	1.15		0.75
Schedule	6000						4.50	4.18	3.64	3.07	2.42	2.00	1.64	1.39	1.07
40	8000								6.24	5.40	4.26	3.53	2.90	2.46	1.88
	10,000									8.40	6.62	5.47	4.50	3.82	2.92
	12,000										9.50	7.88	6.47	5.50	4.20
	14,000											10.70	8.80	7.46	5.72
	16,000												11.50		7.47
	18,000												14.50		9.45
	20,000													15.20	11.70

Nominal	CFM						Line	Pressi	ure - P	SIG					
Pipe Size	Free Air	10	15	20	30	40	50	75	100	125	150	200	250	300	350
6'' Schedule 40	1500 2000 2500 3000 4000 5000 6000 8000 10,000 12,500 15,000 17,500 20,000	0.25 0.43 0.66 0.94	0.20 0.36 0.55 0.78 1.36	0.18 0.31 0.47 0.67 1.16 1.80 2.58	0.15 0.27 0.41 0.58 1.01 1.58 2.26 3.98	0.14 0.24 0.36 0.52 0.90 1.40 2.00 3.54	0.12 0.21 0.33 0.47 0.81 1.26 1.80 3.18 4.90	0.11 0.19 0.30 0.42 0.74 1.14 1.64 2.89 4.45	0.16 0.25 0.36 0.62 0.97 1.38 2.44 3.77 5.85	0.14 0.22 0.31 0.54 0.84 1.20 2.12 3.26 5.06 7.30	0.11 0.17 0.24 0.43 0.66 0.95 1.67 2.57 4.00 5.75 7.82	0.14 0.20 0.35 0.53 0.78 1.38 2.13 3.30 4.75 6.47 8.45	0.17 0.29 0.45 0.64 1.13 1.75 2.71 3.90 5.30	0.10 0.25 0.38 0.55 0.96 1.48 2.30 3.32 4.50 5.88	0.11 0.19 0.29 0.42 0.74 1.14 1.76 2.54 3.46 4.51
8'' Schedule 40	25,000 30,000 3000 4000 5000 7500 12,000 12,500 15,000 17,500 20,000 25,000 30,000 35,000 40,000 45,000	0.23 0.40 0.57 1.37	0.19 0.34 0.47 1.14 2.00	0.17 0.29 0.41 0.98 1.71 2.62	0.14 0.25 0.35 0.85 1.50 2.29 3.30	0.13 0.22 0.31 0.74 1.33 2.04 2.94 3.96	0.10 0.18 0.26 1.08 1.66 2.39 3.26 4.22		0.13 0.19 0.45 0.80 1.22 1.75 2.39 3.09 4.83 6.90	0.12 0.17 0.40 1.04 1.55 2.10 2.73 4.26 6.08 8.30	0.11 0.15 0.36 0.96 1.38 1.88 2.44 3.81 5.45 7.40 9.64	0.13 0.32 0.57 0.87 1.25 1.71 2.21 3.45 4.92 6.70 8.74 11.10	10.80 0.12 0.30 0.52 0.80 1.14 1.56 2.02 3.16 4.50 6.12 8.00	0.11 9.20 13.30 0.11 0.27 0.48 0.73 1.06 1.43 1.85 2.90 4.15 5.64 7.35 9.35	7.05 10.20 0.10 0.24 0.43 0.65 0.94 1.28 1.66 2.59 3.69 5.03 6.55 8.33

Nominal	CFM	-					Line F	Press	ure - F	PSIG					
Pipe Size	Free Air	10	15	20	30	40	50	75	100	125	150	200	250	300	350
	5000	0.20	0.16	0.14	0.12	0.11	0.40	0.40	0.44	0.40	0.11				
	7500	0.43	0.36	0.31	0.27	0.24	0.19	0.16	0.14	0.13	0.11		0.40	0.45	0.40
	10,000	0.75	0.63	0.54	0.47	0.42	0.34	0.29	0.25	0.22	0.20		0.16	0.15	0.13
	12,500	1.16	0.97	0.83	0.72	0.64	0.52	0.44	0.38	0.34	0.30	0.27	0.25	0.23	0.21
	15,000		1.38	1.18	1.03	0.91	0.75	0.63	0.55	0.48	0.43	0.39	0.36	0.33	0.29
	17,500		1.87	1.50	1.40	1.24	1.01	0.86	0.74	0.66	0.59	0.53	0.49	0.45	0.40
10"	20,000			2.07	1.81	1.60	1.31	1.11	0.96	0.85	0.76	0.69	0.63	0.58	0.50
Schedule	25,000				2.82	2.50	2.05	1.73	1.50	1.32	1.18	1.07	0.98	0.90	0.80
40															
-0	30,000					3.58	2.92	2.47	2.14	1.89	1.69		1.40	1.28	1.15
	35,000						3.98	3.37	2.92	2.58	2.30	2.08	1.90	1.75	1.54
	40,000						5.20	4.40	3.80	3.55	3.00		2.48	2.28	2.04
	50,000								5.90	5.20	4.65	4.20	3.85	3.54	3.16
	60,000									7.50	6.70	6.07	5.55	5.10	4.55
	70,000									1.00	9.13		7.55	6.95	6.20
	80,000										0.10	10.80	9.85	9.05	8.10

Nominal Pipe Size	CFM	Line Pressure - PSIG													
	Free Air	10	12.5	15	17.5	20	25	30	40	50	60	70	80	90	100
Pipe Size 12" Schedule 40	Free Air 7500 10,000 12,500 15,000 20,000 25,000 30,000 35,000 40,000 50,000 60,000	10 0.18 0.31 0.48 0.68 0.92 1.20	12.5 0.15 0.26 0.40 0.57 0.77 1.00 1.57	15 0.13 0.22 0.34 0.49 0.64 0.85 1.34 1.89 2.54	0.11 0.19 0.30 0.43 0.58 0.75 1.17 1.85	0.10 0.17 0.26 0.38 0.51 0.66 1.04 1.47	25 0.14 0.22 0.31 0.42 0.54 0.85 1.20 1.62 2.12 3.27 4.69	30 0.12 0.18 0.26 0.35 0.46 0.72 1.01 1.37 1.79 2.78 3.96	0.10 0.16 0.23 0.31 0.40 0.62 0.88 1.19 1.55		60 0.12 0.18 0.24 0.31 0.49 0.69 0.69 0.94 1.22 1.89 2.71	0.11 0.16 0.22 0.28 0.45 0.63 0.85 1.11 1.71	0.10 0.15 0.20 0.26 0.41 0.57 0.77 1.01 1.56	0.14	
	80,000 100,000 125,000								6.10	5.37 8.40	4.80 7.51		3.97 6.21 9.70	3.66 5.71 8.95	3.28 5.10 7.98

Pressure Loss In Pounds For Lengths Other Than 100 Feet

The friction loss in pipe lengths shorter than 100 feet may be calculated proportional to the length. That is: for 50 feet, $\frac{1}{2}$ the tabular figure; for 25 feet, $\frac{1}{4}$ the tabular figure, etc.

In pipe runs of more than 100 feet, the proportional method may be used providing the resultant friction loss does not exceed 9 or 10 psi. If it is greater, a more accurate check may prevent undersizing of pipes. Use the following method, based on the Fanning Equations from which these tables were derived:

$$K = \frac{F_{100} (P \cdot \frac{1}{2} F_{100})}{100}$$
Then:

 $F_1 = P - ?P^2 * 2KL$

Where:

 F_{100} = tabular friction loss figure for 100 ft.

 F_1 = friction loss for length "L"

L = length of pipe in feet

and P = upstream pressure in pipe, psia

Friction of Air in Hose

Size of	Cago	Cubic Feet Free Air Per Min. Passing through 50 Feet Lengths of Hose												
Hose, coupled	Cage Pressure	20	30	40	50	60	70	HOSE 80	90	100	110	120	130	
each end	at line (lb.)	20											130	
(in.)		Loss of Pressure (psi) in 50 Feet Lengths of Hose												
1/2	50	1.8			18.1									
	60	1.3	4.0	8.4	14.8									
	70	1.0	3.4	7.0	12.4	20.0	28.4							
	80	0.9	2.8	6.0	10.8	17.4	25.2	34.8						
	90	0.8	2.4	5.4	9.5	14.8	22.0	30.5	41.0					
	100	0.7	2.3	4.8	8.4	13.3	19.3	27.2	36.6					
	110	0.6	2.0	4.3	7.6	12.0	17.6	24.6	33.3	44.5				
3/4	50	0.4	0.8	1.5	2.4	3.5	4.4	6.5	8.5	11.4	14.2			
	60	0.3	0.6	1.2	1.9	2.8	3.8	5.2	6.8	8.6	11.2			
	70	0.2	0.5	0.9	1.5	2.3	3.2	4.2	5.5	7.0	8.8	11.0		
	80	0.2	0.5	0.8	1.3	1.9	2.8	3.6	4.7	5.8	7.2	8.8	10.5	
	90	0.2	0.4	0.7	1.1	1.6	2.3	3.1	4.0	5.0	6.2	7.5	9.0	
	100	0.2	0.4	0.6	1.0	1.4	2.0	2.7	3.5	4.4	5.4	6.6	7.9	
	110	0.1	0.3	0.5	0.9	1.3	1.8	2.4	3.1	3.9	4.9	5.9	7.1	
1	50	0.1	0.2	0.3	0.5	0.8	1.1	1.5	2.0	2.6	3.5	4.8	7.0	
	60	1.1	0.2	0.3	0.4	0.6	0.8	1.2	1.5	2.0	2.6	3.3	4.2	
	70		0.1	0.2	0.4	0.5	0.7	1.0	1.3	1.6	2.0	2.5	3.1	
	80		0.1	0.2	0.3	0.5	0.7	0.8	1.1	1.4	1.7	2.0	2.4	
	90		1.1	0.2	0.3	0.4	0.6	0.7	0.9	1.2	1.4	1.7	2.0	
	100		1.1	0.2	0.2	0.4	0.5	0.6	0.8	1.0	1.2	1.5	1.8	
	110		0.1	0.2	0.2	0.3	0.4	0.6	0.7	0.9	1.1	1.3	1.5	

Friction Loss of Air in Pipe Fittings

(Expressed in Terms of Equivalent Feet of Straight Pipe)

							Swing		45°	90°	90° Long	Stand	ard Tee	Close		
Nominal Pipe Size Inches	Schedule Number	Inside D	Diameter	Globe Valve	Angle Valve	Gate Valve	Check Valve	Plug Cock	Std. Elbow	Std. Elbow	Radius Elbow	Run of Tee	Side Outlet	Return Brand	90° We Elbo	
		IN.	FT.	L/D = 340	L/D = 145	L/D = 13	L/D = 135	L/D = 18	L/D = 16	L/D = 30	L/D = 20	L/D = 20	L/D = 60	L/D = 30	Short Radius	Long Radius
1/2	40	0.622	0.0518	17.6	7.5	.67	7.0	.93	.83	1.55	1.04	1.04	3.11	2.59		
3/4	40	0.824	0.0685	23.3	9.9	.89	9.2	1.23	1.10	2.06	1.37	1.37	4.11	3.43		
1	40	1.049	0.0872	29.7	13.6	1.14	11.8	1.57	1.40	262	1.74	1.74	5.20	4.36	1.4	1.1
1 ½	40	1.610	0.134	45.5	19.4	1.74	18.1	2.41	2.14	4.02	2.68	2.68	8.10	6.70	2.1	1.6
2	40	2.067	0.172	59.0	25.0	2.24	23.2	3.10	2.75	5.20	3.44	3.44	10.30	9.60	2.8	2.1
2 1⁄2	40	2.469	0.206	70.0	29.9	2.68	27.8	3.70	3.30	6.20	4.12	4.12	12.40	10.30	3.3	2.5
3	40	3.068	0.256	87.0	37.1	3.32	34.6	4.60	4.10	7.70	5.10	5.10	15.40	12.80	4.1	3.1
4	40	4.026	0.335	114.0	48.5	4.35	45.2	6.00	5.40	10.10	6.70	6.70	20.10	16.80	5.4	4.0
5	40	5.047	0.420	143.0	61.0	5.50	57.0	7.60	6.70	12.60	9.40	8.40	25.20	21.00	6.7	5.1
6	40	6.065	0.505	172.0	73.0	6.60	68.0	9.10	8.10	15.10	10.10	10.10	30.30	25.30	8.1	6.1
8	40	7.981	0.665	226.0	96.0	8.70	90.0	12.00	10.70	19.90	13.30	13.30	40.00	33.30	11.0	8.0
10	40	10.020	0.836	284.0	121.0	10.90	11.3	15.00	13.40	25.10	16.70	16.70	50.20	41.80	13.0	10.0
12	40	11.938	0.995			13.00	13.4	17.90	15.90	29.80	19.90	19.90	60.00	50.00	16.0	12.0
14	30	13.250	1.104			14.30	149.0		17.70	33.20	22.10	22.10	64.00	55.00	18.0	13.0
16	30	15.250	1.270			16.50	171.0		20.30	38.20	25.40	25.40	76.00	64.00	20.0	15.0
18	30	17.124	1.430			18.60	193.0		22.80	43.20	28.60	28.60	86.00	72.00	23.0	17.0
20	20	19.250	1.600			20.80	216.0		25.60	48.00	32.00	32.00	96.00	80.00	25.0	19.0
24	20	23.250	1.940			25.20	262.0		31.00	58.00	38.80	38.80	117.00	97.00	30.0	23.0

All valves and cocks to be fully open.

Check valves pressure 0.50 PSI pressure loss to open fully.

Welding elbow data from Midwest Piping Catalog 61 (1961).

L/D valves from Crone Co. Technical Paper No. 410 (1957). Both L and D in feet.

Discharge of Air Through an Orifice

In cubic feet of free air per minute at standard atmospheric pressure of 14.7 lb. Per square inch absolute and 70° F

Gauge Pressure	Diameter of Orifice												
before Orifice in Pounds per	1/64"	1/32"	1/14"	1/8"	1/4"	3/8"	1/2"	1/8"	3/4"	7/8"	1"		
sq. in.			Disc	harge i	n cubic	feet at	free air	per mir	nute				
1	0.028	0.112	0.450	1.80	7.18	16.2	28.7	45.0	64.7	88.1	115		
2	0.040	0.158	0.633	2.53	10.1	22.8	40.5	63.3	91.2	124	162		
3	0.048	0.194	0.775	3.10	12.4	27.8	49.5	77.5	111.0	152	198		
4	0.056	0.223	0.892	3.56	14.3	32.1	57.0	89.2	128.0	175	228		
5	0.062	0.248	0.993	3.97	15.9	35.7	63.5	99.3	143.0	195	254		
6	0.068	0.272	1.09	4.34	17.4	39.1	69.5	109	156	213	278		
7	0.073	0.293	1.17	4.68	18.7	42.2	75.0	117	168	230	300		
9	0.083	0.331	1.32	5.30	21.2	47.7	84.7	132	191	260	339		
12	0.095	0.379	1.52	6.07	24.3	54.6	97.0	152	218	297	388		
15	0.105	0.420	1.68	6.72	26.9	60.5	108	168	242	329	430		
20	0.123	0.491	1.96	7.86	31.4	70.7	126	196	283	385	503		
25	0.140	0.562	2.25	8.98	35.9	80.9	144	225	323	440	575		
30	0.158	0.633	2.53	10.1	40.5	91.1	162	253	365	496	648		
35	0.176	0.703	2.81	11.3	45.0	101	180	281	405	551	720		
40	0.194	0.774	3.10	12.4	49.6	112	198	310	446	607	791		
45	0.211	0.845	3.38	13.5	54.1	122	216	338	487	662	865		
50	0.229	0.916	3.66	14.7	58.6	132	235	366	528	718	938		
60	0.264	1.06	4.23	16.9	67.6	152	271	423	609	828	1082		
70	0.300	1.20	4.79	19.2	76.7	173	307	479	690	939	1227		
80	0.335	1.34	5.36	21.4	85.7	193	343	536	771	1050	1371		

Discharge of Air Through an Orifice

In cubic feet of free air per minute at standard atmospheric pressure of 14.7 lb. Per square inch absolute and 70° F

Gauge Pressure	Diameter of Orifice													
before Orifice in	1/64"	1/32"	1/14"	1/8"	1/4"	3/8"	1/2"	1/8"	3/4"	7/8"	1"			
Pounds per sq. in.			Disc	harge i	n cubic	feet at	free air	per min	ute					
90	0.370	1.48	5.92	23.7	94.8	213	379	592	853	1161	1516			
100	0.406	1.62	6.49	26.0	104	234	415	649	934	1272	1661			
110	0.441	1.76	7.05	28.2	113	254	452	705	1016	1383	1806			
120	0.476	1.91	7.62	30.5	122	274	488	762	1097	1494	1951			
125	0.494	1.98	7.90	31.6	126	284	506	790	1138	1549	2023			
150	0.582	2.37	9.45	37.5	150	338	600	910	1315	1789	2338			
200	0.761	3.10	12.35	49.0	196	441	784	1225	1764	2401	3136			
250	0.935	3.80	15.18	60.3	241	542	964	1508	2169	2952	3856			
300	0.995	4.88	18.08	71.8	287	646	1148	1795	2583	3515	4592			
400	1.220	5.98	23.81	94.5	378	851	1512	2360	3402	4630	6048			
500	1.519	7.41	29.55	117.3	469	1055	1876	2930	4221	5745	7504			
750	2.240	10.98	43.85	174.0	696	1566	2784	4350	6264	8525	11136			
1000	2.985	14.60	58.21	231.0	924	2079	3696	5790	8316	11318	14784			

Table is based on 100% coefficient of flow. For well rounded entrance multiply values by 0.97. For sharp edged orifices a multiplier of 0.61 may be used for approximate results.

Values for pressures from 1 to 15 lbs. Gauge calculated by standard adiabatic formula.

Values for pressures above 15 lbs. Gauge calculated by approximate formula proposed by S.A. Moss.

Where:

AC_{P1}

? T₁

- W = Discharge in lbs. Per set
- A = Area of orifice in sq. in.
- C = Coefficient of flow
- P1 = Upstream total pressure in lbs. Per sq. in. absolute
- T_1 = Upstream temperature in F. abs.

Values used in calculating above table were; C = 1.0, $_{D1}$ = gauge pressure + 14.7 lbs./sq.in. T₁ = 530°F. abs.

Weights (W) were converted to volume using density factor of 0.07494 lbs./cu. ft. This is correct for dry air at 14.7 lbs. Per sq. in. absolute pressure and 70° F.

Formula cannot be used where p1 is less than two times the downstream pressure.

W =

0.5303

CFM vs. Pressure for Various Orifices

Flow is expressed in cubic feet per minute, and is assumed to take place from a receiver or other vessel, in which air is contained under pressure, into the atmosphere at sea level. Temperature of air in receiver is assumed at 60° F. This table is only correct for orifices with narrow edges; flow through even a short length of pipe would be less than that given below.

Receiver	Flo	w of F	ree Ai	r (Cu.	Ft. Per	^r Min.)	throu	gh
Gage Pressure		Ori	fices c	of Vari	ous Di	iamete	ers	
Lbs.	1/64 "	1/32 "	3/64 "	1/16 "	3/32 "	1/8 "	3/16 "	1/4 "
1	0.027	0.107	0.242	0.430	0.97	1.72	3.86	6.85
2	0.038	0.153	0.342	0.607	1.36	2.43	5.42	9.74
3	0.046	0.188	0.471	0.750	1.68	2.98	6.71	11.90
5	0.059	0.242	0.545	0.965	2.18	3.86	8.71	15.40
10	0.084	0.342	0.770	1.360	3.08	5.45	12.30	21.80
15	0.103	0.418	0.940	0.167	3.75	6.65	15.00	26.70
20	0.119	0.485	1.070	1.930	4.25	7.70	17.10	30.80
25	0.133	0.540	1.210	2.160	4.75	8.60	19.40	34.50
30	0.156	0.632	1.400	2.520	5.60	10.00	22.50	40.00
35	0.173	0.710	1.560	2.800	6.20	11.20	25.00	44.70
40	0.190	0.770	1.710	3.070	6.80	12.30	27.50	49.10
45	0.208	0.843	1.900	3.360	7.60	13.40	30.30	53.80
50	0.225	0.914	2.050	3.640	8.20	14.50	32.80	58.20
60	0.260	1.050	2.350	4.200	9.40	16.80	37.50	67.00
70	0.295	1.190	2.680	4.760	10.70	19.00	43.00	76.00
80	0.330	1.330	2.970	5.320	11.90	21.20	47.50	85.00
90	0.364	1.470	3.280	5.870	13.10	23.50	52.50	94.00
100	0.400	1.610	3.660	6.450	14.50	25.80	58.30	103.00
110	0.430	1.760	3.950	7.000	15.70	28.00	63.00	112.00
120	0.470	1.900	4.270	7.580	17.00	30.20	68.00	121.00
130	0.500	2.040	4.570	8.130	18.20	32.40	73.00	130.00
140	0.540	2.170	4.870	8.680	19.50	34.50	78.00	138.00
150	0.570	2.330	5.200	9.200	20.70	36.70	83.00	147.00
175	0.660	2.650	5.940	10.600	23.80	42.10	95.00	169.00
200	0.760	3.070	6.900	12.200	27.50	48.70	110.00	195.00

Air Receivers

SIZING:

A rule of thumb is:

• The receiver should be sized as a minimum for 10% of the compressor capacity (cubic feet).

Formula for Calculating Exact Size

Where:

- T = 1 Load Cycle (sec.)
- V = Air Network Volume (cubic feet)
- Delta P = Difference Between Cut In and Cut Out Pressure (PSI)
- Patm = Jobsite Ambient Pressure (PSIA)
- Qin = Flow Into Receiver (CFM)
- Qout = Flow Out of Receiver (CFM)

Note: The worst case is at a 50% load factor (Qin/2).

Standard American Receiver Sizes

Diameter IN.	Length FT.	Volume CU. FT.
24	6	19
30	7	34
36	8	57
42	10	96
48	12	151
54	14	223
60	16	314
66	18	428

Example:

Select an air receiver for a 1250 CFM air compressor.

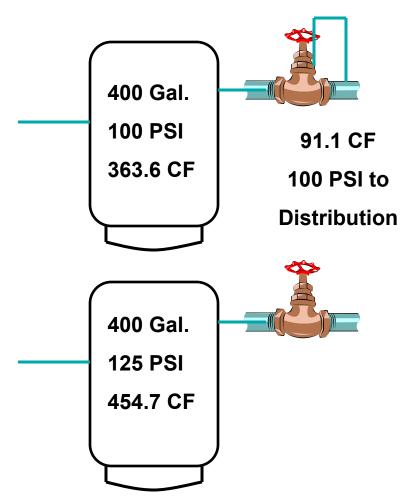
- Using rule of thumb, min. capacity should be 125 cubic feet from standard size receivers. Select the size that meets this minimum requirement (151 cubic feet).
- Using the formula, assume the following:

T = 10 Sec. (3 cycles/min)

Delta P = 10 PSI

50% Load Factor

Therefore:


$$10 = \frac{V \times 10 \times 60}{14.7 \times (1250/2)}$$
 V = 153 Cubic Feet in the Network (Receiver + Piping)

The full storage is the volume which can be drawn off the tank at a stored pressure until the pressure is reduced to the regulated pressure you are removing it at. Example: If you were to store air in a 400 gallon tank at 125 PSIG, how much volume would be removed before the tank pressure was at the discharge regulated pressure of 100 PSIG?

The useful storage is dependent on a control differential.

If air is taken out of this system at the same pressure that it is compressed, there is no storage regardless of the size or number of tanks. The only storage is present when the system is started and first turned on which may help prevent the compressors from going into drawdown initially. Without regulation either at the discharge of the receivers or at all use points, there is no storage and air is taken directly off the compressor head or airend. This causes the owner to interpret the HP requirements higher than would be necessary with a balanced system. It also causes maintenance and operating problems in the system.

Compresses Air Receiver Storage Capacity

The chart below indicates how much free air is stored at various pressures for different size tanks. It does not indicate that this is the <u>useful storage</u>.

Tank	Capacity	Capacity in cubic feet of free air @ Gauge shown @ 14.7 PSIA BP											
Dimensions	Gallons	ATMS 1	4.5	7.8	9.5	11.2	12.9	14.6	18	21.4			
		PSIG 0	50	100	125	150	175	200	250	300			
14" X 36"	20	2.7	9.2	18.2	23	27.5	32.1	36.7	45.9	55.1			
15" X 36"	30	4.0	13.6	27.2	34	40.8	47.6	54.4	68	81.6			
20" X 48"	60	8.0	27.2	54.4	68	81.6	95.2	108.8	136.1	163.2			
20" X 63"	80	10.7	36.4	72.8	91	109.1	127.3	145.5	181.9	218.3			
24" X 68"	120	16.0	54.4	108.8	136	163.2	190.4	217.6	272	326.4			
30" X 84"	240	32.0	108.8	217.6	272	326.4	380.8	435.2	544	652.8			
36" X 96"	400	53.5	181.8	363.6	454.7	545.4	636.3	727.2	908.9	1090.8			
42" X 117"	660	88.2	299.9	599.9	749.9	899.9	1049.9	1199.9	1499.9	1799.9			
48" X 144"	1060	141.7	479.4	963.6	1204.5	1445.4	1686.3	1927.3	2409.1	2890.7			
54" X 166"	1150	207.2	704.5	1409.1	1761.4	2113.6	2465.9	2818.2	3522.7	4227.3			

Storage Capacity Worksheet

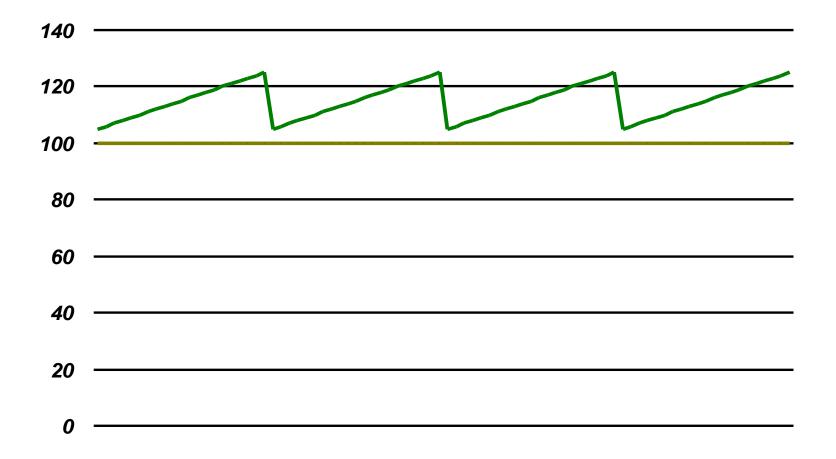
Average

PSI

1.01																	
150	0.34	0.68	1.02	1.36	1.7	2.04	2.38	2.72	3.06	3.4	3.74	4.08	4.42	4.76	5.1	5.44	5.78
145		0.34	0.68	1.02	1.36	1.7	2.04	2.38	2.72	3.06	3.4	3.74	4.08	4.42	4.76	5.1	5.44
140			0.34	0.68	1.02	1.36	1.7	2.04	2.38	2.72	3.06	3.4	3.74	4.08	4.42	4.76	5.1
135				0.34	0.68	1.02	1.36	1.7	2.04	2.38	2.72	3.06	3.4	3.74	4.08	4.42	4.76
130					0.34	0.68	1.02	1.36	1.7	2.04	2.38	2.72	3.06	3.4	3.74	4.08	4.42
125						0.34	0.68	1.02	1.36	1.7	2.04	2.38	2.72	3.06	3.4	3.74	4.08
120							0.34	0.68	1.02	1.36	1.7	2.04	2.38	2.72	3.06	3.4	3.74
115								0.34	0.68	1.02	1.36	1.7	2.04	2.38	2.72	3.06	3.4
110									0.34	0.68	1.02	1.36	1.7	2.04	2.38	2.72	3.06
105										0.34	0.68	1.02	1.36	1.7	2.04	2.38	2.72
100											0.34	0.68	1.02	1.36	1.7	2.04	2.38
95												0.34	0.68	1.02	1.36	1.7	2.04
90													0.34	0.68	1.02	1.36	1.7
85														0.34	0.68	1.02	1.36
80															0.34	0.68	1.02

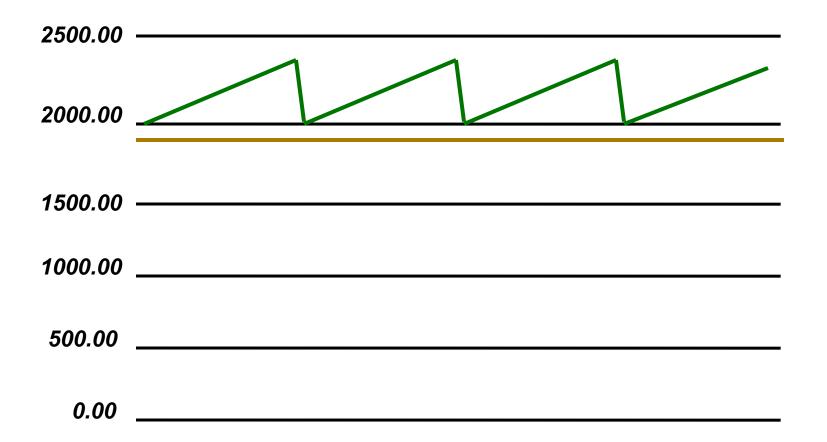
Capacity Required (1) Minute Event

-	-		•	,													
	Storage in Gallons																
5.78	129	259	388	518	647	776	906	1035	1165	1294	1424	1553	1682	1812	1941	2071	2200
5.44	138	275	413	550	688	825	963	1100	1238	1375	1513	1650	1788	1925	2063	2200	2338
5.1	147	293	440	587	733	880	1027	1173	1320	1467	1613	1760	1907	2053	2200	2347	2493
4.76	157	314	471	629	786	943	1100	1257	1414	1571	1729	1886	2043	2200	2357	2514	2671
4.42	169	338	506	677	846	1015	1185	1354	1523	1692	1862	2031	2200	2369	2538	2708	2877
4.08	183	367	550	733	917	1100	1283	1467	1650	1833	2017	32200	2383	2567	2750	2933	3117
3.74	200	400	600	800	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400
3.4	220	440	660	880	1100	1320	1540	1760	1980	2200	2420	2640	2860	3080	3300	3520	3740
3.06	244	489	733	978	1222	1467	1711	1956	2200	2444	2689	2933	3178	3422	3667	3911	4156
2.72	275	550	825	1100	1375	1650	1925	2200	2475	2750	3025	3300	3575	3850	4125	4400	4675
2.38	314	629	943	1257	1571	1886	2200	2514	2829	3143	3457	3771	4086	4400	4714	5029	5343
2.04	367	733	1100	1467	1833	2200	2567	2933	3300	3667	4033	4400	4767	5133	5500	5867	6223
1.7	440	880	1320	1760	2200	2640	3080	3520	3960	4400	4840	5280	5720	6160	6600	7040	7480
1.36	550	1100	1650	2200	2750	3300	3850	4400	4950	5500	6050	6600	7150	7600	8250	8800	9350
1.02	733	1467	2200	2933	3667	4400	5133	5867	6600	7333	8067	8800	9533	10267	11000	11733	12467
0.68	1000	2100	3200	4300	5400	6500	7600	8700	9800	10900	12000	13100	14200	15300	16400	17500	18600
0.34	2200	4400	6600	8800	11000	13200	15300	17600	19800	22000	24200	26400	28500	30700	33000	35200	37400
Event Cu'	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700


Capacity Required (1) Minute Event

Storage in Cubic Feet

								otorag									
5.78	17	35	52	69	87	104	121	138	156	173	190	208	225	242	260	277	294
5.44	18	37	55	74	92	110	129	147	165	184	202	221	239	257	276	294	313
5.1	20	39	59	78	98	118	137	157	176	196	216	235	255	275	294	314	333
4.76	21	42	63	84	105	126	147	168	189	210	231	252	273	294	315	336	357
4.42	23	45	68	90	113	136	158	181	204	226	249	271	294	317	339	362	385
4.08	25	49	74	98	123	147	172	196	221	245	270	294	319	343	368	392	417
3.74	27	53	80	107	134	160	187	214	241	267	294	321	348	374	401	428	455
3.4	29	59	88	118	147	176	206	235	265	294	324	353	382	412	441	471	500
3.06	33	65	98	131	163	196	229	261	294	327	359	392	425	458	490	523	556
2.72	37	74	110	147	184	221	257	294	331	368	404	441	478	515	551	588	625
2.38	42	84	126	168	210	252	294	336	378	420	462	504	546	588	630	672	714
2.04	49	9 8	147	196	245	294	343	392	441	490	539	588	637	686	735	784	833
1.7	59	118	176	235	294	353	412	471	529	588	647	706	765	824	882	941	1000
1.36	74	147	221	294	368	441	515	588	662	735	809	882	956	1029	1103	1176	1250
1.02	98	196	294	392	490	588	686	784	882	980	1078	1176	1275	1373	1471	1569	1667
0.68	147	294	441	588	735	882	1029	1176	1324	1471	1618	1765	1912	2059	2206	2353	24X0
0.34	294	588	882	1176	1471	1765	2059	2353	2647	2941	3235	3529	3824	4118	4412	4706	5000
Event Cu'	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700



Air Pressure With & Without Pressure Control

SCFM Demand With & Without Pressure Control

Compressed Air Demand Reduction

 With compressed air pressure set at 100 PSI the compressed air demand is held constant at 1915 scfm. This represents a compressed air demand reduction of 273 scfm from the previous average compressed air demand of 2278 scfm

Operating Cost Reduction

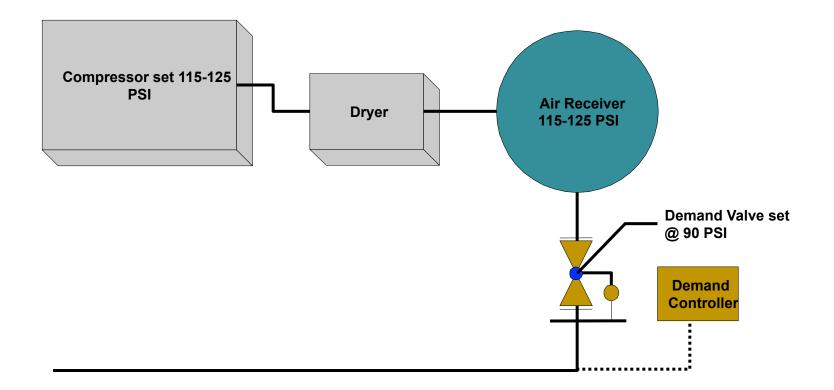
 With compressor delivering compressed air at only 15 cents per 1000 cubic feet a demand reduction of 273 scfm equals 273 x 60 x 8760 / 1000 x .15 = \$ 21,523.00 annually.

Optimize Air Storage

- Ideal operating pressure > 90 psi
- Compressor operating pressure 105-125 psi
- Ideal receiver capacity 4 gal. / scfm or 1915
 x 4 = 7660 gallons (7500)
- Usable storage 1723.5 cubic feet

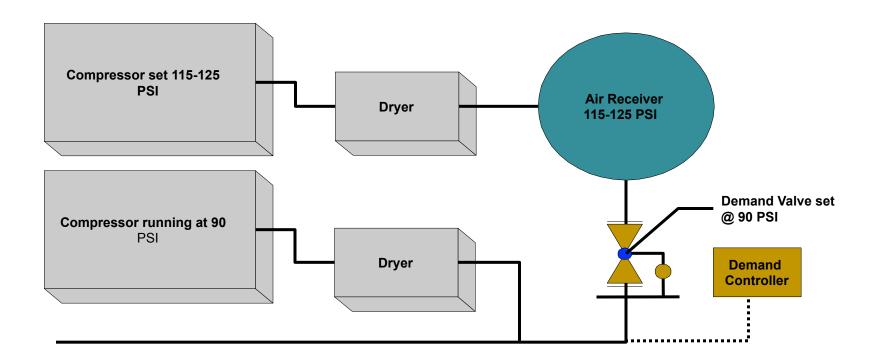
Load Shifting Capacity

- Effective stored compressed air 1723.5 cubic feet
- Compressed air demand spikes of up to 2372
 + 1723.5 = 4095.5 scfm for up to one minute without any additional air compressors!!!
- Air pressure is maintained @ 90 psi

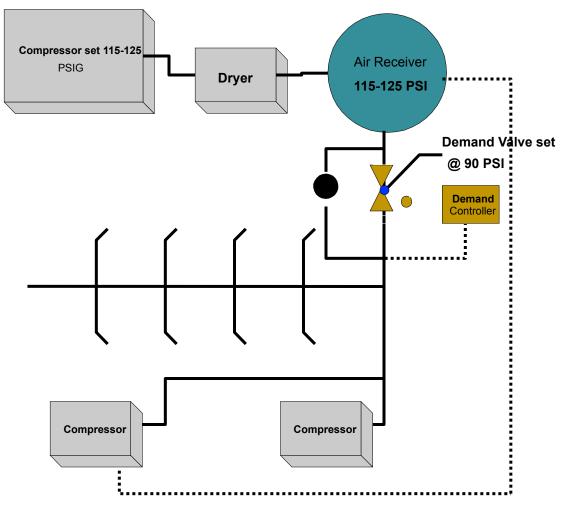


Compressor Controls

- Air storage allows for multiple compressor installation with a workable operating deadband.
- Demand expansion systems provide a stable operating pressure for base loaded compressors



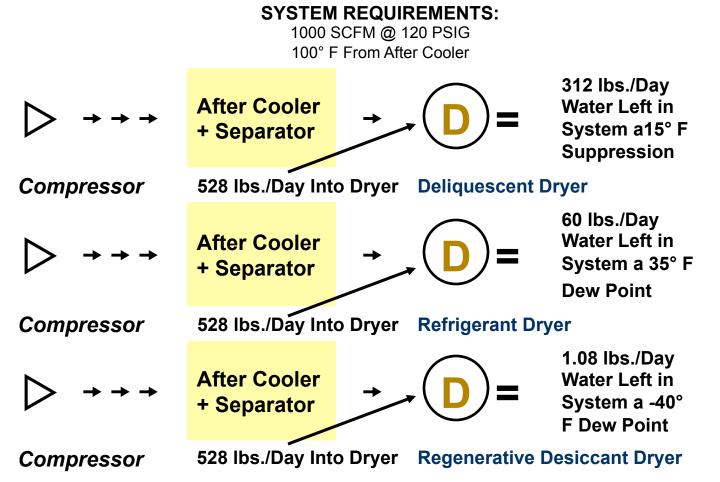
Typical Installation



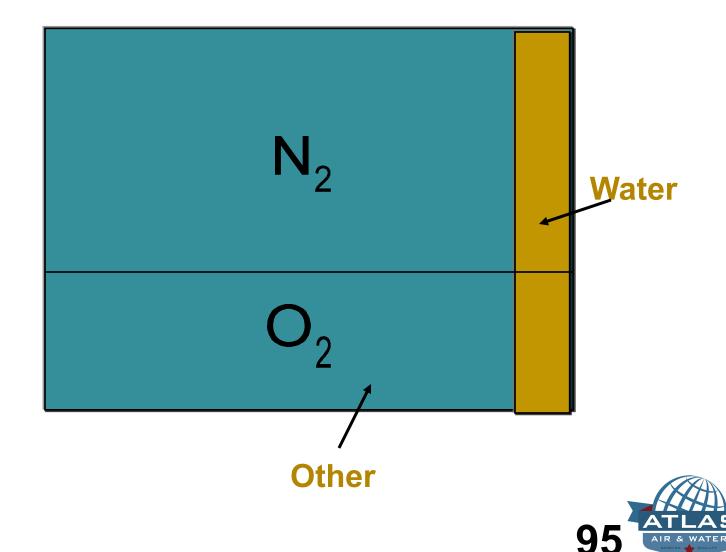
Base Loaded Compressor Installation

Satellite Compressor Installation

Dew Points


Definitions:

- <u>Atmospheric Dew Point</u> is the lowest temperature at which air will hold moisture at atmospheric pressure without condensation.
- Pressure Dew Point is the lowest temperature at which air will hold moisture at compressed pressures without condensation, a pop will always provide a lower atmospheric dew point, i.e., A + 35° F PDF a 100 PSI will yield an atmospheric dew point of -10° F.


Technical Bulletin

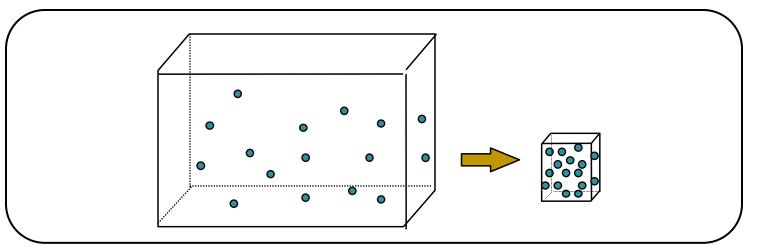
In order to select one of the 3 basic designs that best suit a particular application, the degree of dryness required for each application must be determined. For comparison purposes, consider the following sketch pertaining to an application where 1000 SCFM of compressed air at 120 PSIG and 100° F. saturated is to be dried:

Composition of Air

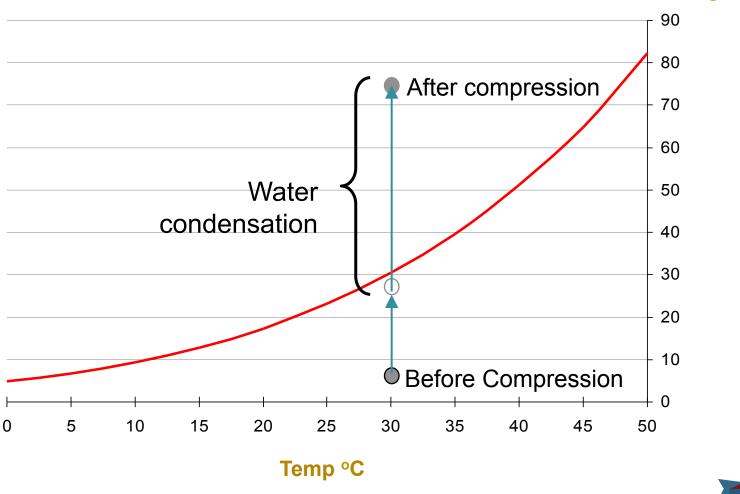
What does relative humidity mean?

RH is defined as the ratio between the actual water content to the amount of water the air can possibly hold at the same temperature

Actual water content

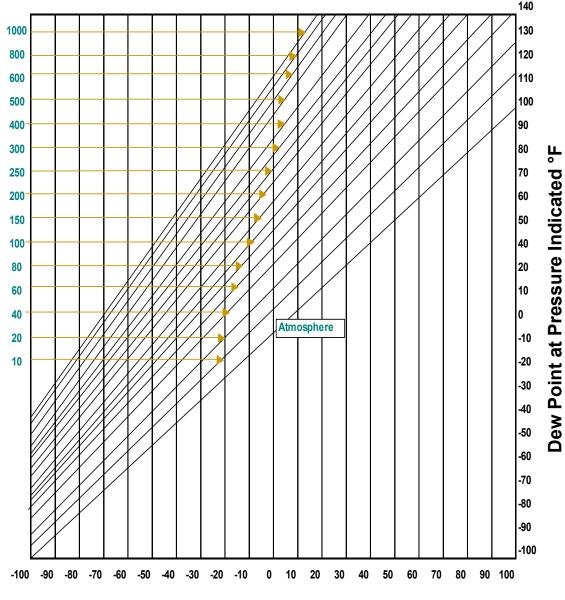

Max. possible water content

= RH(%)


What happens during compression?

Air is compressible - Volume reduces $(m^3) \downarrow$ Water weight remains the same (g) =Vapor density g/m³ increases \uparrow

What happens during compression?



Water content g/m³

Note that all of these dryers are designed to remove water vapor but not entrained moisture. Filtering systems are used to remove contaminants other than moisture in the vapor state which include entrained liquids. They range from the basic entrainment separator which removes over 95% of entrained liquids by cyclonic action to the relatively sophisticated coalescing filters which are capable of removing down to 100% of particles 0.1 micron and larger. Coalescing is a filtering process where by liquid aerosols inpinge on the element and are agglomerated into larger and larger droplets and are drained away by gravity. An entrainment separator and/or coalescing filter is generally installed ahead of the drying unit to insure all entrained moisture has been removed from the compressed media before it passes through the dryer. Most dryer manufacturers recommend and supply the more efficient coalescing filters to provide maximum protection for their drying systems. It is best to allow the dryer manufacturer to specify or supply a "prefilter" in order to maximize dryer performance.

Dew Point Conversion Chart

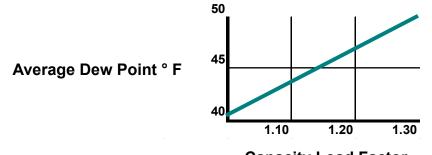
Dew Point at Atmospheric Pressure °F

Dew Point Conversion:

To obtain the dew point temperature expected if the gas were expanded to a lower pressure proceed as follows:

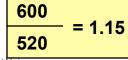
- 1. Using "dew point at pressure." locate this temperature on scale at right hand side of chart.
- 2. Read horizontally to intersection of curve corresponding to the operating pressure at which the gas was dried.
- 3. From that point read vertically downward to curve corresponding to the expanded lower pressure.
- 4. From that point read horizontally to scale on right hand side of chart to obtain dew point temperature at the expanded lower pressure.
- 5. If dew point temperatures at atmospheric pressure are desired, after step 2 above read vertically downward to scale at bottom of chart which gives "Dew Point at Atmospheric Pressure."

Capacity Correction Factors


The following correction factors should be used if conditions vary from the nominal rating conditions of the dryers, which are 100° F Ambient, 100° F Inlet Air Temperature and 100 PSIG.

Correction Factor (K)

Ambient Te	emperature	Inlet Air Te	emperature	Inlet Air Pressure				
120° F	K = .84	120° F	K = .70	120 PSIG	K = 1.05			
110	.92	110	.84	110	1.02			
100	1.0	100	1.0	100	1.0			
90	1.1	90	1.2	90	.97			
80	1.2	80	1.5	80	.93			
70	1.3			70	.90			


Overload Effect on Dew Point

The curve below can be used to determine the approximate effect on dew-point when its rated capacity is exceeded at nominal conditions. This curve represents average performance of the entire FD Series line.

Capacity Load Factor

Example: What is the effect on dew point if an FD 608 is used for 600 cfm.

From the curve the dew point would be approximately 45° F

Heat of Compression Dryers

 Heat of compression dryers use a desiccant to absorb the moisture in the compressed air. The desiccant is regenerated by using hot compressed air prior to an aftercooler. There is no purge loss. Dew points range from - 50° F to - 10° F. The dew point is proportional to the ambients.

MD Air Dryers

- Rotating drum: from 3 up to 10 r/h
- Regeneration air sector: 25%
 - Drying air sector: 75%
- Regeneration airflow:
 - ■125°C 220°C
 - **35% 45%**
- No air loss (MD guarantees100% compressor capacity)
- Pressure dewpoint: from -15°C to -40°C

Compressor Capacity

2065 CFM	Power Cost	(8760 HR. 7 Ce	nts/KW) \$20	3.145	
		Heat of			
Dryer	Refrig.	Compression	Heatless	H.R.	B.P.
Purge Loss, CFM	0	0	310	155	0
Power Cost \$	8,217	100	100	18,396	40,576
Net Capacity	2,065	2,065	1,755	1,910	2,065
Power Cost (Comp. & Dryer)	211,362	203,245	203,245	221,541	243,721
Power Cost/CFM	102.35	98.42	115.81	115.99	118.02
		Correction F	or Pressu	ire Drop	
Delta P (New Filter)	5	4	7	7	7
Power Increase %	2.5	2	3.5	3.5	3.5
\$	5,079	4,063	7,110	7,110	7,110
Total Power Cost \$	216,441	207,208	209,355	225,551	250,831
\$/CFM	104.81	100.34	119.29	119.71	121.47
Difference %	+4.5		+18.9	+19.3	+21.1
			-	-	
	Correct	ion For Press	sure Drop	With Dir	ty Filter
Delta P (Average)	5	4	15	15	15
Power Increase %	0	0	4	4	4
\$	0	0	8,126	8,126	8,126
Total Power Cost \$	21,441	207,208	217,481	236,777	258,957
\$/CFM	104.81	100.34	123.92	123.97	125.4
Difference %	+4.5		+23.5	+23.5	+25.0
			•		

Quality Standard for Instrument Air as Defined by The Instrument Society of America

Defines Dew Point as Follows:

- 4.1 Dew Point (At Line Pressure).
- 4.1.1 Outdoor installations (Where any part of the instrument air system is exposed to the outdoor atmosphere).

The dew point at line pressure shall be at least 10° C (18° F) below the minimum local recorded ambient temperature at the plant site.

4.1.2 Indoor installations (Where the entire instrument air system is installed indoors).

The dew point at line pressure shall be at least 10° C (18° F) below the minimum temperature to which any part of the instrument air system is exposed at any season of the year. In no case should dew point at line pressure exceed 2° C (Approximately 35° F).

Dryer Pre and After Filter

 Typically, dryer filters have a pressure drop of approximately 1-2 PSI when new. As the filters become contaminated, the pressure drop increase.
 Most dryer manufacturers suggest change @ a 8-10 PSI drop per filter.

A rule of thumb is that for every PSI drop, the power that is wasted is about $\frac{1}{2}$ %.

If the pressure drop is 8 PSI across each filter (16 PSI total), the increased power cost for the same pressure downstream of the filter will be approximately 8%.

<u>Coolers</u>

Intercoolers

 As the approach temperature of an intercooler increases due to dirty coolers, the power requirement increases. For every 11 degrees F deterioration, the power consumption will increase by 1%.

Aftercoolers

• For every 10 degrees F deterioration of the aftercooler approach temperature, the dryers' capacity is reduced by 16%.

Pressure

Cost of Increased Pressure

• For every 1 PSI increase the power requirement will increase by $\frac{1}{2}$ %.

Pressure Drops in the Air Distribution System

- Designing a piping system correctly can save many thousands of dollars in operating and maintenance costs
 - 1. Properly size lines
 - 2. Sloping the piping with low point drains and traps
 - 3. Branches of the main line should be from the top to prevent water from entering the branch
 - 4. Whenever possible, a loop system should be used to reduce the pressure drop
 - 5. If there is an intermittent user of larger volumes, a local receiver should be placed near the use point

Power Costs

Full load power costs are rather easy to calculate.

Power Cost = BHP_{/Motor Eff} X .746 X Hrs. Operate X \$Per KW

Example:

500 CFM 125 BHP 4200 Hrs/Year \$.06 KWH Motor Eff. = 94% Cost = 125 _{/.94} X .746 X 4200 X .06 Cost = \$25,000

However, if the compressor will be unloaded or modulate part of the time, the formula changes to: Example:

P.C. =	% of Load >	BHP x	.746 x HRS	x \$/KW + %	Unloaded BHP x	.746 + HRS X \$/KW
		EFF			Motor Eff	
P.C. =	.80 x 125	x .746 x	<mark>x 4200 x .06 + .</mark>	20 x 19	x .746 + 4200 x .	06 = \$20,793
	.94			.90)	

•Basis 1/2% BHP Per 1 PSI Change

- Down Stream Oil Coalescing Filters
 Delta P when New = 2 PSI = 1% BHP
 Delta P at Change Out = 10 PSI = 5% BHP
- Down Stream Particulate Filters
 Delta P when New = 2 PSI = 1% BHP
 Delta P at Change Out = 10 PSI = 5% BHP
- Refrigerated Air Dryer
 Delta P when New = 4 PSI = 2% BHP

Dollars to Overcome Filter and Dryer Restrictions

• Basis a 100 Horsepower Compressor:

When New = $\frac{4 \text{ PSID x .746 x .06 x 8000}}{92}$ = \$1,557

When Replaced =	12 PSID x .746 x .06 x 8000	- = \$4,670
	92	- φ4,070

Preventative Maintenance

Effects on Performance

Inlet Air Filters

As the pressure drop across the inlet air filter increases, the compressor's capacity is decreased. For every 4 inches of water pressure drop (0.147 PSI) the mass flow is reduced by approximately 1%.

Example

What is the increased power cost for a 250 HP compressor operating with an air filter drop of 12 in. water.

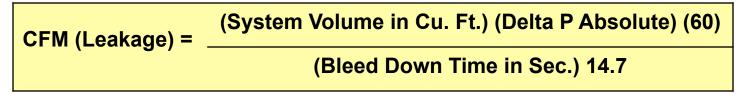
Assume: Motor efficiency 94%, 6000, Hours/Year, \$.07/KW

	•	250 x .746	x 6000 x .07 x	(12 X 0.01)	¢2 500
	\$ =	.94		(4)	— = \$2,500

Compressed Air Leaks

- •Leaks should be kept generally between 5% 10%
- When power costs are high, lower figures can still prove to be economical
- Generally, compressed air users do not realize how much air escapes through small leaks

Hole Diameter	Air Leakage At 100 PSI	Cost Per Year	
IN.	CFM	\$.06 KWH	
1/32	1.62	158	
1/16	6.5	633	
1/8	26	2,532	
1/4	104	\$10,130	


What do system leaks cost?

- Determine size of the leak either through calculation or actual size of orifice
- 1/4 inch orifice can pass 103 CFM @ 100 PSIG
- A typical 25 horsepower oil flooded rotary screw air compressor
- At 6 cents a KW and 8000 hours of operation this can equal \$9,946

What can be done to improve energy efficiency of a compressed air system?

- Walk the piping and listen
- If background noise is too loud, then an ultra sonic sun may be needed
- Classic soap and water
- Check defective tools, quick connection points, etc.
- Check and repair all drain traps. Do not leave them "cracked" open
- Determine through calculation

Power Cost Calculation

\$ / Year =	BHP x .746 x \$ Per KW x Hours of Operation
¢ / Tour	Motor Efficiency

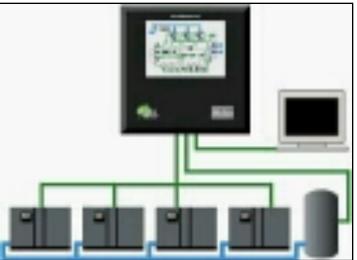
\$ / Year =	25 x .746 x .06 x 8000
	90

Economical and Reliable Elektronikon® Compressor

- Managing a multiple compressor installation used to be a complex art. With atlas Copco' ES – Energy Saver air management systems, it has become a precise science.
- Built around the established Elektronikon microprocessor technology, ES – Energy Saver systems link the individual compressor controllers and optimize the total system for minimal pressure band, maximum savings, and easy-to-schedule maintenance.
- By providing compressed air in the right quantity and at the lowest possible cost, the ES systems let you concentrate on your business – instead of on compressed air or your power bill.

The Elektronikon® Experience

- Proven and trusted microprocessor technology
- The standard controller of most Atlas Copco compressors
- Language selection
- Constant monitoring of all compressor functions
- Minimum idling time for maximum savings
- Detailed warning and shutdown information
- Automatic restart after voltage failure
- Preventive maintenance assistance (indication of intervals)
- Lowest cost compressed air



Network Intelligence

- ES network links ES100 or ES300 central controller with individual Elektronikon Compressor controllers
- Comprehensive user interaction, either via ES control panel or from anywhere in the plant via ES400 remote monitoring software
- Real-time control and performance monitoring of each compressor on the network

- Minimal pressure band in the total compressed air system (lowest cost compressed air)
- Sequence shift option (equal wear and better preventive maintenance scheduling)

By reducing the pressure band width, Atlas Copco ES100 and ES300 Energy Savers **cut your electricity bill. Savings of 10%** are typical, and depending on the installation, even greater savings can be achieved.

The Clean & Clear CMS-OSD[™] Condensate Filtration System Clear CMS-OSD is the ultimate industrial water and condensate filtration system

ISO 14000 Compliant

The Clean & Clear Condensate Management System "CMS" & Oil/Water Separation Device "OSD" Filtration System removes both petroleum and synthetic lubricants/ coolants from air compressor condensate to safe levels required by Federal and State Clean Water Regulations (below 15 ppm) and ISO 14000 environmental standards.

New Technology

The Clean & Clear CMS-OSD Filtration System utilizes patented new technology that is extremely efficient at trapping petroleum and synthetic lubricant/coolant while water flows cleanly through the OSD Filter. The OSD Filter removes all types of super refined petroleum, petroleum diesters, PAO's, polyglycols, PAG's, and liquid silicone fluids including: Sullube32, 24KT Fluid, Ultra Coolant, Aeon Fluids, QuinSyn, GA, FG, 4K, 8K, Roto Fluids and more. The CMS defuses and separates oily condensate/ compressed air via a three step process.

The CMS Turbo separator spins the oily condensate/compressed air to the outside wall of the CMS where condensate collects. Liquid droplets and decompressed air flow through the diffuser plate to the outer separation chamber. Decompressed air changes direction from the outer chamber to the inner chamber and is released to atmosphere via the diffuser top plate. Condensate collects in the outer chamber and fills the inner chamber via the scavenge line. Dirt, rust and scale collect in the outer chamber preventing debris carry over to the inner chamber, CMS pump or OSD. Condensate from the inner chamber is drawn to the CMS pump via inner chamber scavenge tube, and delivered to the OSD.

Superior to Competition

The Clean & Clear OSD Filtration System is much more efficient, less expensive and easier to maintain than old fashioned gravity separators or boiler systems. Clean & Clear removes both petroleum based and synthetic based lubricant/coolant from condensate.

© 2003 Clean & Clear Corporation. All rights reserved. Printed in U.S.A. All trademarks and registered trademarks are property of their respective owners.

The Clean & Clear CMS-OSD[™] Condensate Filtration System

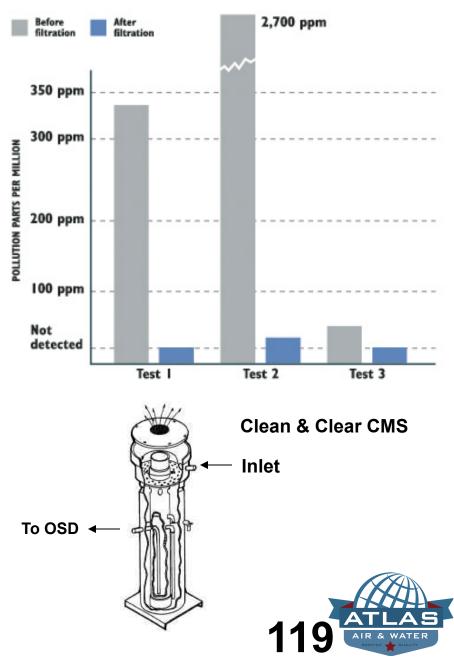
Clean & Clear OSD filtration is simple and effective

Simple & Clean to Operate

No moving parts and no tools required for OSD Filter change. All hazardous wastes remain in the OSD Filter for easy and safe disposal. Change OSD Filter when replacement indicator moves from green to red. No spills, no mess, no contact with collected hazardous waste.

A complete system

The Clean & Clear CMS-OSD system maximizes the efficiency and life of the OSD Filter. The CMS removes compressed air from the condensate, eliminates excess oil, sludge, rust and particulates from the condensate. The CMS provides a controlled flow of condensate at a specific pressure to the OSD Filter. CMS-OSD are prepackaged. Just set CMS on the floor, plug in 115 volt power cord and connect oily condensate inlet to CMS. Attach CMS to OSD via connection tube provided. Connect clean water discharge from OSD to drain. The Clean & Clear CMS accepts multiple condensate sources and operates with any type of condensate drain. The CMS and OSD Filter have a small foot print, just 16 x 16 each. The CMS has a large 12 gallon collection sump. Field experience shows 10–14 months is typical OSD Filter life. The CMS is one time purchase.


Clean & Clear CMS-OSD System OSD Filters

Size	Part No.	Designed for:	Weight
3 x 30 OSD	#3030110OSD	5 hp–30 hp compressors	5.5 lbs.
6 x 26 OSD	#2660110OSD	40 hp–60 hp compressors	16 lbs.
6 x 36 OSD	#3660110OSD	75 hp–100 hp compressors	21 lbs.
6 x 44 OSD	#4460110OSD	125 hp–150 hp compressors	23 lbs.
8 x 26 OSD	#2680110OSD	200 hp–250 hp compressors	24 lbs.
8 x 36 OSD	#3680110OSD	250 hp–300 hp compressors	30 lbs.
8 x 52 OSD	#5280110OSD	350 hp and larger compressors	39 lbs.
Delivery stock to	o five days.		

CMS (Condensate Management System)

Floor stand is integral/included with CMS. Floor stand is option adder for OSD's.

Size	Part No.		Weight
11 x 48	#CMS400	12 gallon sump, inlet and oulet	64 lbs.
		connections are 3/4 NPT	

Clean & Clear OSD Test Results

Sullair Sullube 32 Condensate Before & After Clean & Clear Filtration System

Compressor manufacturers advertise 1-3 ppm oil carry over to the compressed air header. However, the oil carry over from the air oil separator is 9-12 ppm. The compressor manufacturer relies on the after cooler, moisture separator to remove 8-11 ppm via condensate. The oil to condensate concentration varies summer to winter. As the amount of condensate is greater in summer than winter yet the oil carry over remains the same. Oil carry over will increase with poor maintenance of air oil separator, over filling oil sump (excess oil is pushed down stream), plugging of scavenge line.

4707 Highway 61, Suite 184 • White Bear Lake, MN 55110-3227 • USA Phone: (952) 449-3946 • e-mail: <u>cleanandclear@bigfoot.com</u> www.gocleanandclear.com

Laws & Regulations Pertaining to Disposal of Oily Condensate

Following is a list of the various laws and regulations that pertain to the disposal of oily condensate (as of March 13, 2002):

- Federal Water Pollution Control Act (USC Title 33, Section 1321 et.seq.).
- Resource Conservation and Recovery Act (USC Title 42 Section 6903 et.seq.).
- Clean Water Act (USC Title 33 Section 1251 et.seq.).
- Oil Pollution Recovery Act of 1990 (USC Title 33 Section 2702-2761).
- Pollution Prevention Act (USC Title 42 Section 13101 et.seq.).
- Toxic Substance Control Act (USC Title 15 Section 2601 et.seq.).

While all these statutes and the rules promulgated there under differ in some respects, they all prohibit the disposal of petroleum based solvents and synthetic based solvents into storm sewers, surface water, septic systems or into the ground.

If there is a oily sheen (approximately 10PPM or 10 mg/liter) it is a violation of these statutes. The fines can be as high as \$10,000 per day plus clean up costs and criminal penalties for willful violations.

Most states have adopted the same standards with their pollution control acts and are mandated under federal law to enforce these standards. Inspections and permits are required in most states.

In addition, each local sewage disposal facility and regional waste disposal districts have adopted standards for the discharge of oily condensate into the sewage system. It varies from district to district, but our research indicates that the most common standards are 20ppm to 50ppm with both petroleum as well as synthetic based lubricants being classified as hazardous wastes

Heat Load Formulas

BTUH = 500 X GPM X TR

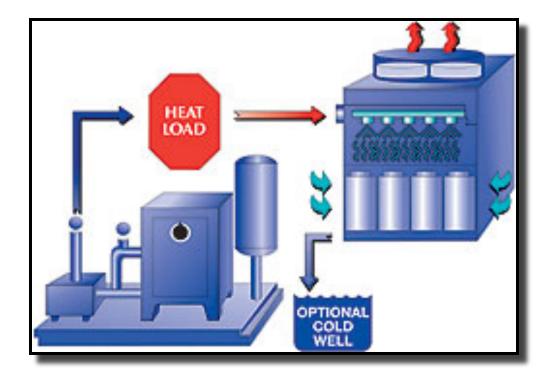
Where:

- 500 = Lbs. of Water/Hr.
- GPM = Gallons Per Minute
- TR = Temperature Rise
- 1 HP = 2545 BTUH

Therefore:

The total horsepower transmitted to the water is:

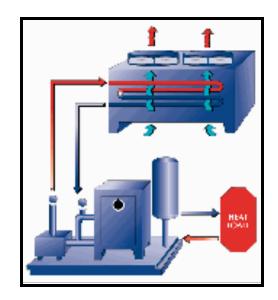
HP = -	500 x GPM x TR
	2545


Approximately 4% of shaft HP remains in the compressed air. Approximately 2% of shaft HP is lost to radiation.

Therefore:

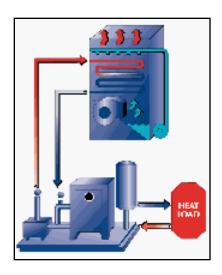
$$SHAFT HP = \frac{500 \times GPM \times TR}{2545 \times .94}$$

OE Open Evaporative Cooling



Dry Cooler

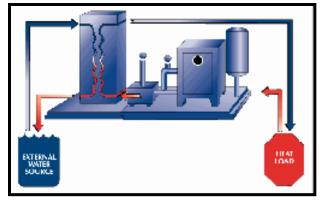
- 1. Closed loop dry cooling system.
- 2. Ethylene glycol solution eliminates all compressor cooler cleaning.
- 3. Temperature control of coolant by fan cycling.
- 4. Coolant temperatures to within 10 or 15 degrees F of ambient dry bulb.
- 5. Air elimination system eliminates all scale and corrosion.
- 6. Optional Dual pumps with automatic switch over with alarm.



CE Closed Loop Evaporative Cooling System

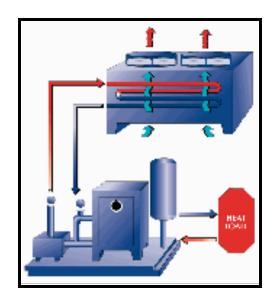
- Closed loop evaporative cooling system.
- Coolant temperatures to within 5 to 10 degrees F of ambient wet bulb.
- Temperature control by water spray and fan cycling.
- Requires a separate water supply for evaporation.

Plate and Frame


- 1. Closed loop cooling system for compressor
- 2. Ethylene glycol or demineralized water* for compressor cooling.

*Provided system is installed indoors

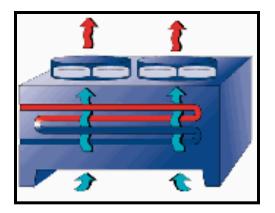
- 3. Transfers heat to a raw water source, e.g., existing cooling tower (4), city water, pond, well, river or sea water.
- 4. Temperatures to within 5 to 10 degrees F of raw water supply.
- 5. Thermostatic control of raw water supply to reduce consumption.

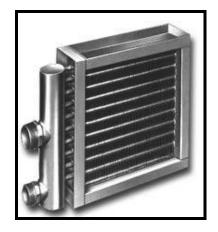


Dry Cooler With Trim Cooler

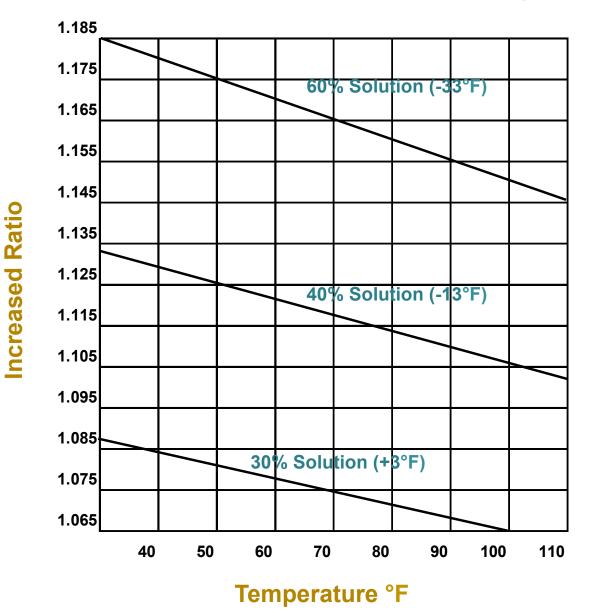
- 1. Combines benefits of dry cooler and plate and frame (Trim Cooler).
- 2. Trim cooler is only used during extreme summertime temperatures during the day.
- 3. Yearly external water consumption is less than an evaporative tower.
- 4. Temperatures to within 5 to 10 degrees F of raw water supply.
- 5. Thermostatic control of raw water supply to reduce consumption.

CW Chilled Water Cooling





HR Heat Recovery for CE and CD Systems



GPM Increase for Ethylene Glycol vs. Water for Same Heat Rejection

